

Armmite F4 +
User Manual

MMBasic Ver 5.07.02 +

A consolidated manual for the Armmite F4

DRAFT 0
5.07.02 Beta 0

For more details on MMBasic go to
http://geoffg.net/maximite.html

and http://mmbasic.com

For latest update of this manual look at these links on
The Back Shed Forum and the Fruit of the Shed website.

https://www.thebackshed.com/forum/ViewTopic.php?FID=16&TID=13542
and http://fruitoftheshed.com/MMBasic.Armmite-F4-User-Manual-and-Firmware.ashx

http://geoffg.net/maximite.html
http://mmbasic.com/
https://www.thebackshed.com/forum/ViewTopic.php?FID=16&TID=13542
http://fruitoftheshed.com/MMBasic.Armmite-F4-User-Manual-and-Firmware.ashx

Page 2 Armmite F4 User Manual Page 2

About
The Armmite F4 was conceived and developed by Peter Mather (matherp on the Back Shed Forum).
It is a port to STM32 of MMBasic developed by Geoff Graham and uses the MMBasic interpreter written by
Geoff Graham (http://geoffg.net).

Support

Support questions should be raised on the Back Shed forum (http://www.thebackshed.com/forum/Microcontrollers)
where there are many enthusiastic Maximite and Micromite and Armmite users who would be only too happy
to help. The developers of both the Armmite F4 and MMBasic are also regulars on this forum.

Copyright and Acknowledgments

The Maximite firmware and MMBasic is copyright 2011-2020 by Geoff Graham and Peter Mather 2016-2020.
1-Wire Support is copyright 1999-2006 Dallas Semiconductor Corporation and 2012 Gerard Sexton.
FatFs (SD Card) driver is copyright 2014, ChaN.
WAV and FLAC file support are copyright 2019 David Reid

The compiled object code (the .bin file) for the Armmite F4 is free software: you can use or redistribute it as
you please. The source code is available via subscription (free of charge) to individuals for personal use or
under a negotiated license for commercial use. In both cases go to http://mmbasic.com for details.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

This Manual
This manual relies heavy on content from the following manuals be Geoff Graham.

Micromite User Manual
Micromite Plus User Manual
Colour Maximite 2 User Manual

Also the following manuals by Peter Mather.
Micromite Extreme User Manual
Armmite H7 User Manual
Armmite L4 User Manual

Much information is also gleaned from posts (mainly by Peter Mather) in various threads relating to Armmite
F4 on The Back Shed Forum. Many contributors may recognise their work within this document and are
thanked for their contributions.

The assembler of this manual is Gerry Allardice. It is distributed under a Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 Australia license (CC BY-NC-SA 3.0)

http://geoffg.net/
http://www.thebackshed.com/forum/Microcontrollers
http://mmbasic.com/

Page 3 Armmite F4 User Manual Page 3

Contents
Micromite Family Summary .. 12

Armmite F4 Features .. 14
STM32F407VET6 Data Sheet and Schematic ...14
STM32F407VET6 Cortex-M4 32-bit RISC CPU @ 168MHz ...15
132Kbyte program and 114Kbyte variable space ...15
MM.DEVICE$...15
Double Precision Floating Point ..15
Random Number Generation ...15
Longstring handling ..15
Input Output Pins and Protocols ..15
USB Console (the default) ..15
Four Serial Ports ...15
Eight PWM Channels ...16
Two SPI Channels ..16
I2C ...16
1-Wire Communication...16
Dual 12-bit DACs ...16
Three 12-bit ADCs ...16
Battery Backed-up Built-in Real time clock (RTC)..16
SPI LCD Panel and Touch Connector ...16
16-bit interface to SSD1963, ILI9341, OTM8009A and NT35510 Based LCD Displays17
PS2 Keyboard Connection ..17
Audio Output ..17
Extended WAV File Playback ...17
Temperature Sensor ..17
External I/O connectors ..17
W25Q16 Flash ..17
RST Key ...17
Key 0 Switch ..17
Key 1 Switch ..17
Key_UP Switch ..17
LED D2 and D3 ..17
Power LED ...18
WS2812 support ...18
GPS support..18
OPTION VCC voltage ..18
CPU SLEEP commands ..18
CPU SLEEP ...18
CPU SLEEP time ..18
Unsupported commands ..18

Loading the MMBasic Firmware ... 19
Program Memory not cleared when firmware updated ...19
Options not cleared when firmware updated ..19
Saved variables not cleared when firmware updated ..19

Power and Console Connections ... 20
USB Console (the default) ..20

Page 4 Armmite F4 User Manual Page 4

Windows USB connection ..20
Apple Macintosh USB connection ..21
Linux USB connection ..21
Power Requirements ...21
Powering from external 5V source ..21
Switching to Serial Console (via Option Command) ..21
Switching to Serial Console (via Key 0 at Restart) ..22
Restoring USB Console (via Option Command) ..22
Restoring USB Console (via Key 1 at Restart) ..22
Armmite F4 interaction with USB console ..22
Using Serial Console via a USB – Serial Converter ...23
VT100 Terminal Emulators...23
Wireless Console using ESP-01 ESP8266 ...24
Troubleshooting USB Console ..24
Troubleshooting Serial Console ..25
Resetting MMBasic ..25

Pin and Connector Capabilities .. 26
STM32F407VET6 Pin function and connector positions ...26
STM32F407VET6 Explanation of keys used in above table ..28
STM32F407VET6 Connector and Pin Layout ...30
STM32F407VET6 Board Versions ...30
STM32F407VET6 Pins by Function ...31
STM32F407VET6 Modifications ..32
STM32F407VET6 MINI Pin function and connector positions ...33
STM32F407VET6 MINI Connector and Pin Layout ...36
STM32F407VET6 MINI Differences ..36
STM32F407VET6 MINI – Modification to Route RST and SPI-IN...37
STM32F407VET6 MINI Connector and Pin Layout -After Modification ..37

Using MMBasic... 38
Commands and Program Input ..38
Editing the Command Line ...38
Shortcut Keys at Commandline ...38
Shortcut Keys in AUTOSAVE ..39
Line Numbers and Program Structure ...39
Running or Interrupting a Program ..39
Saved Variables ..39
Timing ..39
Watchdog Timer ...40
PIN Security ...40
Single, Secure HEX File ...41
Commands Vs Functions ..41
Read Only Variables ...41
Setting Options ...41
Saving Options ...42
Resetting MMBasic ..42
OPTION RESET ..42

Quick Start Tutorial ... 43
Immediate Mode ...43

Page 5 Armmite F4 User Manual Page 5

A Simple Program ..43
Flashing a LED on the STM32F407VET6 board ...43
Tutorial on Programming in the BASIC Language ..44
Setting the AUTORUN Option ...44

Full Screen and Commandline Editors ... 45
Full Screen Editor ...45
Long Lines in the Editor ...46
Colour Coded Editor Display ..46
Command Line Buffer and Editor ...47

Variables, Expressions and Operators ... 49
Naming Conventions ..49
Variables ..49
Constants ..49
OPTION DEFAULT ...49
OPTION EXPLICIT ...50
DIM and LOCAL ...50
STATIC ..51
CONST ..51
Special Characters in Strings ...51
Expressions and Operators ..52
Mixing Floating Point and Integers ...53
64-bit Unsigned Integers ...53

Subroutines and Functions ... 55
Subroutines ...55
Local Variables ...55
Functions ..55
Passing Arguments by Reference ..56
Passing Arguments by Value...56
Passing Arrays ..57
Early Exit ...57
Recursion ...57
Example of a Defined Function ...58

Program Initialisation, CFunctions and the Library ... 59
Embedded C Routines - CSubs and CFunctions ..59
The Library ...59
Library Implementation Details (Armmite F4) ..60
Program Initialisation..62
MM.STARTUP ..62
MM.PROMPT ..62
Flow Diagram ...62
Memory Command ...64

Using the I/O pins ... 65
Digital Inputs ..65
Analog Inputs ...65
Counting Inputs ..65
Digital Outputs ...66
Pulse Width Modulation ...66

Page 6 Armmite F4 User Manual Page 6

Interrupts ..67
Interrupts (polled) vs SETPIN CIN,PIN,FIN (hardware) ...68

Armmite F4 Deployment Considerations .. 69
Setting Option VCC ..69
Armmite F4 Reliance on Battery Backed Ram ..69
Battery Life and Monitoring VBAT ..69

Running Armmite F4 without Backup Battery ... 70
No Battery and Embedding Configuration Options in a Program ...70
OPTION AUTORUN ON in MM.STARTUP (No Battery Backed up Options) ...71
Using the Library on Armmite F4 with No Battery Backed up Options..71
VAR Save VAR Restore not persistant..71
RTC will not maintain time if power removed ...72
Mitigating Battery Failure ...72

Electrical Characteristics .. 73
Power Supply ...73
Digital Inputs ..73
Analog Inputs ...73
Digital Outputs ...73
Timing Accuracy ..73
PWM Output ..73
Serial Communications Ports ..73
Other Communications Ports ..73
Flash Endurance ...73

Audio Output .. 74
Playing WAV and FLAC Files ..74
Generating Sine Waves ...74
Utility Commands ...75

Special Device Support .. 76
Infrared Remote Control Decoder ...76
Infrared Remote Control Transmitter ..77
Measuring Temperature ..77
Measuring Humidity and Temperature ..77
Measuring Distance ..78
LCD Display ..78
Keypad Interface...79
WS2812 and SK6812 RGBW Support ..80

SD Card Support .. 81
Load and Save Image ..81
Load and Save Data ..82
File and Directory Management ..82
XModem Transfer ..83
Example of Sequential I/O ..83
Random File I/O ...84

W25Q16 Flash Support .. 85

Display Panels .. 86
16 Bit Parallel Interface LCD Panels ...86

Page 7 Armmite F4 User Manual Page 7

Pin out for FSMC connector..86
Pins not available to MMBasic or SPI LCD Panels..87
SSD1963 Power Considerations ..87
Backlight Control – BACKLIGHT (0-100) ...87
SPI Based LCD Panels ..88
Connecting SPI Based LCD Panels ...88
Configuring MMBasic for SPI Displays ..90
User Defined LCD Panels in MMBasic ...90
Loadable Driver LCD Panels as CSUBs ..90

Touch Support .. 91
Configuring Touch..91
Calibrating the Touch Screen ..91
Touch Functions ...91
The GUI BEEP Command ..92
Touch Interrupts ...92

PS2 Keyboard and LCDPANEL as Console ... 93
LCD Display as the Console Output ..93
Using LCDPANEL as the Console ..93
PS2 Keyboard ...93

Using an LCD Panel ... 95
Screen Coordinates ...95
Read Only Variables ...95
Drawing Commands ...95
Colours ...96
RGB888 Vs RGB565 with Pixel()...96
Fonts ..97
Embedded Fonts ...97
Rotated Text ...98
Transparent Text ...98
BLIT Command ..98
Load Image ...99
Example ...99

Advanced Graphics .. 100
Frame ... 100
LED.. 101
Check Box .. 101
Push Button .. 101
Switch .. 101
Radio Button .. 101
Display Box .. 101
Text Box ... 102
Number Box ... 102
Formatted Number Box .. 103
Spin Box ... 104
Caption ... 104
Circular Gauge.. 104
Bar Gauge... 105

Page 8 Armmite F4 User Manual Page 8

Area.. 105
Interacting with Controls... 105
MsgBox() ... 106

Advanced Graphics Programming Techniques .. 108
The User Should Be In Control ... 108
Program Structure ... 108
Disable Invalid Controls ... 109
Use Constants for Control Reference Numbers .. 109
The Main Program Is Still Running ... 109
Use Interrupts and SELECT CASE Statements ... 110
Touch Up Interrupt ... 110
Keep Interrupts Very Short ... 111
Multiple Screens ... 111
Multiple Interrupts .. 112
Using Basic Drawing Commands .. 112
Overlapping Controls .. 113
Timing LCD Updates with GETSCANLINE() .. 113
The Pump Control Example GUI Program .. 114

Miscellaneous Features .. 117
Serial Interfaces .. 117
SPI Interface ... 117
Upgrading Your BASIC Program in the Field ... 117
Creating CSUBs ... 117

Other Devices and Support Resources .. 118
The Back Shed Forum .. 118
Fruit of the Shed Wiki ... 118
Interfacing various hardware modules ... 118
Internet Access using ESP8266 ... 118

MMBasic Characteristics .. 119
Implementation Characteristics ... 119
Compatibility .. 119
MMBasic Firmware Memory Map for the STM32F407 Implementation ... 120

Startup and Reset – Quick Reference .. 121
Detailed Listing .. 121

Operators and Precedence .. 122
Detailed Listing .. 122
Numeric Operators (Float or Integer) .. 122
String Operators .. 122

Predefined Read Only Variables .. 123
Detailed Listing .. 123

Option Settings ... 126
Detailed Listing .. 126

Commands ... 130
Detailed Listing .. 130

Functions .. 177
Detailed Listing .. 177

Page 9 Armmite F4 User Manual Page 9

Obsolete Commands and Functions .. 188
Detailed Listing .. 188

Change Log .. 189

Appendix A – Serial Communications .. 192
The OPEN Command ... 192
Input/Output Pin Allocation .. 192
Examples .. 193
Reading and Writing ... 193
Interrupts .. 193
Low Cost RS-232 Interface ... 193

Appendix B – I2C Communications .. 195
7-Bit Addressing ... 196
I/O Pins .. 196
Example ... 196

Appendix C – 1-Wire Communications ... 197

Appendix D – SPI Communications.. 198
I/O Pins .. 198
SPI Open .. 198
Transmission Format .. 198
Standard Send/Receive ... 198
Bulk Send/Receive.. 198
SPI Close .. 199
Examples .. 199

Appendix E W25Q Windbond .. 200

Appendix F – Special Keyboard Keys .. 205

Appendix G - Cyclic Redundancy Check (CRC) ... 206
Using a CRC ... 206
The MMBasic CRC function: ... 207

Appendix H – Loading the Firmware .. 209
Alternative Method – Using COM 1 ... 212
Linux and the Raspberry Pi ... 213

Appendix M – Alternate Commands and Functions.. 214
Background ... 214
BLIT/SPRITE .. 214
Table of Accepted and Core Syntax ... 214

Page 10 Armmite F4 User Manual Page 10

Introduction

Armmite F4 (STM32F407VET6 development board) single board that has everything you need - USB serial
port, RTC with battery, SDcard slot, TFT header. It runs faster than the MM+ and is much cheaper as a
complete system. Lots of projects like Geoff's Super Clock, DDS signal generator, and boat computer are easy
to port to the ArmmiteF4 with display and run superbly.

The STM32F407VET6 STM32 Cortex-M4 Development Board which has a pin compatible TFT screen
available to plug directly in.

The matching display is 16-bit parallel and very fast
Buy the pair from here and many other vendors

Note there are lots of variants of STM32F407 development boards. You must buy the one pictured for the
firmware to work.

The Armmite F4 firmware version will work on this PCB with no configuration necessary and no ancillary
hardware needed. i.e. the main peripherals will work immediately on power up.

The firmware can be loaded to the board over the USB port with no programmer needed and the MMBasic
console will be on the USB, no USB/UART needed.

The speed of the port is about 1.3x faster than a MM+ at 120MHz. Peripherals include 4 x UART, 2 x SPI, 8 x

https://www.aliexpress.com/item/Free-shipping-STM32F407VET6-development-board-Cortex-M4-STM32-minimum-system-learning-board-ARM-core-board/32618222721.html
https://www.aliexpress.com/item/33013274704.html?spm=a2g0o.productlist.0.0.4e0f2303RFzZpy&algo_pvid=73a9395f-ec2b-49fb-99df-1543deb0646d&algo_expid=73a9395f-ec2b-49fb-99df-1543deb0646d-0&btsid=2100bddd16128968983765283e1744&ws_ab_test=searchweb0_0,searchweb201602_,searchweb201603_

Page 11 Armmite F4 User Manual Page 11

PWM/Servo, 2 x I2C, 13 x 12-bit ADC, 2 x 12-bit DAC, 16-bit parallel TFT I/F supporting the screen above
and any SSD1963 display using an adapter board.

There are 47 user configurable pins (DOUT, DIN, etc.)

The firmware uses a different way of interfacing with the TFT screens using the STM32F407's FSMC
interface. This treats the screen as a memory device and allows for very fast performance (clear screen on the
ILI9341 currently takes 6 mSec). Touch is supported with full GUI functionality. The pins used by the FSMC
interface are not available to MMBasic if the screen is not used.

The basic features of the Armmite F4 are:
 Low cost affordable fun. The firmware (including the BASIC interpreter) is completely free. The

STM32F407VET6 development board is low cost and needs no assembly. The firmware can be loaded
using free software so a programmer or special equipment is not required to get started. If the specified
LCD is purchased it plugs in with no modification required.

 Instant startup into the BASIC interpreter. Program space is 132KB, enough for reasonable sized
programs while general RAM used for variables, buffers etc. is 114KB.

 Full featured BASIC interpreter with double precision floating point, 64-bit integers and string
variables, long variable names, arrays of floats, integers or strings with multiple dimensions, extensive
string handling and user defined subroutines and functions. Typically, it will execute a program at up to
90,000 lines per second.

 PS2 Keyboard support. The keyboard can have US, UK, FR, GR, BE, IT or ES key mappings.

 Stereo audio output can play WAV and FLAC files and generate precise sine wave tones.

 A full screen editor is built into the firmware. It includes advanced features such as colour coded
syntax, search and copy, cut and paste to and from a clipboard. With one key press the program can be
saved and run. If an error occurs another key press will return to the editor with the cursor placed on the
line that caused the error.

 Full support for SD cards including editing and running programs on the SD card as well as opening
files for reading, writing or random access. Cards up to 32GB formatted in FAT32 are supported and the
files can also be read and written on personal computers running Windows, Linux or the Mac operating
system.

 Programs can be easily transferred from another computer (Windows, Mac or Linux) using the SD
card, XModem protocol or by streaming the program over the serial console input.

 Battery backed clock will keep the correct time, even with the power disconnected.

 Power is 5 volts at 70mA without LCD and 140mA with the standard LCD. (backlight on). This
will increase with the bigger displays.

Page 12 Armmite F4 User Manual Page 12

Micromite Family Summary
The Micromite Family consists of five major types, the standard Micromite, the Micromite Plus, the Micromite

eXtreme, the Pi-cromite, the Armmite L4, the Armmite F4 and the Armmite H7. All
use the same BASIC interpreter and have the same basic capabilities however they
differ in the number of I/O pins, the amount of memory, the displays that they support
and their intended use.

Standard Micromite Comes in a 28-pin or 44-pin package and is designed for small embedded controller

applications and supports small LCD display panels. The 28-pin version is particularly
easy to use as it is easy to solder and can be plugged into a standard 28-pin IC socket.

Micromite Plus This uses a 64-pin and 100-pin TQFP surface mount package and supports a wide
range of touch sensitive LCD display panels from 1.44" to 8" in addition to the
standard features of the Micromite. It is intended as a sophisticated controller with
easy to create on-screen controls such as buttons, switches, etc.

Micromite eXtreme This comes in 64, 100-pin and 144-pin TQFP surface mount packages. The eXtreme
version has all the features of the other two Micromites but is faster and has a larger
memory capacity plus the ability to drive a VGA monitor for a large screen display. It
works as a powerful, self contained computer with its own BASIC interpreter and
instant start-up.

Pi-cromite Runs on all versions of the Raspberry Pi with a 40-pin I/O connector. No analogue
input capability but 5x faster than a Micromite eXtreme when running on a Pi 3.

Armmite L4 Runs on the STM32L43x series chips. Is targeted for low power usage.

Armmite F4 Runs on Armmite F4 (STM32F407VET6 development board) single board that has

everything you need.

Armmite H7 Runs on the NUCLEO-H743ZI processor. This is the highest speed single-chip

Micromite currently available.

Colour Maximite 2 The Colour Maximite 2 is a small self contained computer inspired by the home

computers of the early 80's such as the Tandy TRS-80, Commodore 64 and Apple II.
It includes its own BASIC interpreter and powers up in under a second into the BASIC
interpreter. Output is to a VGA screen rather than LCDPanels.

PicoMite Latest port by Peter Mather. Runs on a low cost Raspberry Pi Pico controller.

Page 13 Armmite F4 User Manual Page 13

 Micromite Micromite Plus Micromite

eXtreme
Armmite F4 Armmite

H7

 28-pin
DIP

44-pin
SMD

64-pin
SMD

100-
pin

SMD

100/144/6
4 -pin
SMD

100 pin
STM32F407V

ET6

NUCLEO-
H743ZI2

Maximum CPU Speed 48 MHz 48

MHz
120

MHz
120

MHz
252MHz 168MHz 480MHz

Maximum BASIC
Program Size

59 KB 59 KB 100 KB 100 KB 540 KB 132K 512KB

RAM Memory Size 52 KB 52 KB 108 KB 108 KB 460 KB 114K 512KB
Clock Speed (MHz) 5 to 48 5 to

48
5 to
120

5 to
120

200 to
252

168MHz 400

Total Number of I/O
pins

19 33 45 77 75/115/46 47 102

Number of Analog
Inputs

10 13 28 28 40/48/24 13 26

Number of Serial I/O
ports

2 2 3 or 4 3 or 4 3 or 4 4 4

Number of SPI
Channels

1 1 2 2 3/3/2 2 4

Number of I2C
Channels

1 1 1 +
RTC

1 +
RTC

2/2/1 +
RTC

2 2

Number of 1-Wire I/O
pins

19 33 45 77 75/115/46 47 96

PWM or Servo
Channels

5 5 5 5 6 8 8

Serial Console
USB Console x
PS2 Keyboard and
LCD Console

USB Keyboard and
LCD Console

SD Card Interface
Supports ILI9341 LCD
Displays

Supports Ten LCD
Panels from 1.44" to
8" (diameter)

 +
ILI9481

SSD1963
ILI9341_P16

OTM8009A_16
NT35510

+
ILI9481

Supports VGA
Displays

Sound Output
(WAV/tones)

 On-chip
DACs

On-chip
DACs

Supports PS2 Mouse
Input

Floating Point
Precision

Single Single Double
S/W

Double
S/W

Double
H/W

Double S/W Double
H/W

Power Requirements 3.3V
30 mA

3.3V
30 mA

3.3V
80 mA

3.3V
80 mA

3.3V
160 mA

3.3V
200mA

3.3V
200mA

Page 14 Armmite F4 User Manual Page 14

Armmite F4 Features
The Armmite F4 is a port of MMBasic to support a specific development board based on STM32F407VET6
Cortex-M4 32-bit RISC CPU processor which provides nearly all of the services for the user. This includes the
flash memory (where the BASIC interpreter is installed),
This image provides an overview of its hardware features:

STM32F407VET6 Data Sheet and Schematic
This manual will describe the resulting features of the development board as a result of this specific MMBasic
implementation. The STM32F407 Data Sheet and Schematic should be consulted to clarify any information on
the wiring or underlying capabilities of the development board and its processor. They are available on these
links.
https://github.com/mcauser/BLACK_F407VE/blob/master/docs/STM32F407VET6_datasheet.pdf

https://github.com/mcauser/BLACK_F407VE/blob/master/docs/STM32F407VET6_schematics.pdf

https://www.thebackshed.com/forum/uploads/panky/2021-02-24_164500_STM32F407VET6_schematic-
english-2.pdf (with English translations, courtesy of @panky of TBS forum)

https://github.com/mcauser/BLACK_F407VE/blob/master/docs/STM32F407VET6_datasheet.pdf
https://github.com/mcauser/BLACK_F407VE/blob/master/docs/STM32F407VET6_schematics.pdf
https://www.thebackshed.com/forum/uploads/panky/2021-02-24_164500_STM32F407VET6_schematic-english-2.pdf
https://www.thebackshed.com/forum/uploads/panky/2021-02-24_164500_STM32F407VET6_schematic-english-2.pdf

Page 15 Armmite F4 User Manual Page 15

The features of the specific implementation, both hardware and software a summarised here. Many are further
detailed within the manual.

STM32F407VET6 Cortex-M4 32-bit RISC CPU @ 168MHz
This is a 32-bit ARM processor with 512K of flash and 196K of RAM. It runs at 168MHz. It includes a
dedicated display interface which is used to support 16bit parallel LCD Panels on the FSMC connector. The
MMBasic firmware is loaded onto the flash memory of this chip and provides the MMBasic interpreter for the
Armmite F4. The Armmite F4 clock is fixed at 168Mhz.

132Kbyte program and 114Kbyte variable space
The Armmite F4 supports MMBasic programs up to 128Kbytes in size,Variable space is 114Kbyte
and 4K of battery backed SRAM for Saved variables.

MM.DEVICE$
On the Armmite F4 the read only variable MM.DEVICE$ will return " Armmite F407".

Double Precision Floating Point
All floating point uses double precision calculations. The Armmite F4 uses the single precision floating
point capability of the STM32F407VET6 chip to help with the calculations.

Random Number Generation
The Armmite F4 uses the hardware random number generator in the STM32 series of chips to deliver
true random numbers. This means that the RANDOMIZE command is no longer needed and is not
supported.

Longstring handling
The Armmite F4 supports a comprehensive set of commands and functions for handling long strings
stored in integer arrays

Input Output Pins and Protocols
Forty seven input/output pins with 13 capable of analog input. Built in support for an IR remote control,
temperature and humidity sensors. Communications protocols include I2C, asynchronous serial,
RS232, SPI and 1-Wire. These can be used to communicate with many sensors (temperature,
humidity, acceleration, etc.) as well as for sending data to test equipment.

USB Console (the default)
By default MMBasic starts with the USB console enabled.

Four Serial Ports
The four serial ports share pins used for other functions, so may not be available if the other functions are
required. COM1 can be dedicated as a serial console to replace the USB console if desired.

Page 16 Armmite F4 User Manual Page 16

Eight PWM Channels
Minimum frequency is 1Hz, maximum is 20MHz. Duty cycle and frequency accuracy will depend on
frequency.
PWM 1A,1B,1C
PWM 2A,2B,2C
PWM 3A,3B

Two SPI Channels
The Armmite F4 supports two SPI channels. The second channel operates the same as the first, the only
difference is that the commands use the notation SPI2 (for example SPI2 WRITE, etc.).
Note that if the Armmite F4 is configured for a SPI based LCD panel or touch then SPI2 channel is not
available for MMBasic. The SPI1 channel is available for use in MMBasic and is prewired on the development
board for the on-board W25Q16 Flash chip and the NRF24L01 socket. See Appendix F for an example
program to access the W25Q16 flash from MMBasic.

I2C
You can use I2C exactly the same as for the Micromite with the following limitations:
The implementation does not support 10-bit addressing (i.e. options 0 and 1 only).
The implementation does not support I2C slave mode.
A second I2C channel can be used using the command I2C2.

1-Wire Communication
The 1-Wire protocol was developed by Dallas Semiconductor to communicate with chips using a single
signalling line. Any pin can be used. See Appendix C for details.

Dual 12-bit DACs
The Armmite F4 has 2 12-bit DACs built into the chip. The analogue levels can be set using the DAC
command. In addition, they can be used by the PLAY FLAC and PLAY WAV commands. The pins cannot be
used for general purpose I/O. The DACs support an arbitrary function generator capability using the DAC
START command.

Three 12-bit ADCs
Analogue to digital conversion can be carried out in 12-bit resolution, 10-bit resolution, and 8-bit
resolution depending on the frequency of the conversion. In addition, the ADC can read the battery
backup voltage, the chip die temperature and the internal reference voltage. Using the ADC
command conversion of three channels can be set to run in the background at up to 500,000
samples per second per channel and one of the channels can be set to provide edge-triggering of the
conversion. There are 13 analogue capable pins which can be assigned to these three inputs.

Battery Backed-up Built-in Real time clock (RTC)
The Armmite F4 includes a built-in RTC. A lithium CR1220 coin cell battery on the development board keeps
the internal ARM STM32 real time clock running while the power is off and also keeps a bank of 4KB RAM
alive at the same time. The real time clock is used to provide the correct time to MMBasic on startup and the
battery backed RAM is used to store saved variables and options. The life of this battery life is about 3 to 4
years of normal use. All time and date functions work directly with the RTC and the timing can be trimmed
with an OPTION command. The real time clock can be read at millisecond precision. The 32,768Hz crystal for
the RTC is also used to discipline the main CPU oscillator ensuring accuracy of commands like TIMER. If you
find that the time drifts while the power is off, you can use the OPTION RTC CALIBRATE command to
correct for any inaccuracies.

SPI LCD Panel and Touch Connector
The Armmite F4 software supports the ILI9341 and ILI9481 LCD panels with touch supported.
The development board has no dedicated socked for them so individual wiring of the pins or an adaptor boards
is required.

Page 17 Armmite F4 User Manual Page 17

16-bit interface to SSD1963, ILI9341, OTM8009A and NT35510 Based LCD Displays
The Armmite F4 drives the SSD1963 and some other 16-bit parallel bus LCD displays. For extra speed the
SSD1963 controllers run with a reduced colour range (65 thousand colours RGB565) compared to 16 million
colours with the normal 8-bit interface. SPI touch is supported. The ILI9341 16 bit LCD that is purchased with
the STM32F407VET6 development board, while only 320*240 pixels, plugs directly into the board via the 32
pin FSMC connector. All other LCD panels will require an adaptor board.

PS2 Keyboard Connection
A PS2 keyboard can be connected using the PS2 KB_CLK and KB_DATA lines on pins PD3 and PA15
respectively. The software supports the PS2 keyboard but there is no actual PS2 connector. See later in this
document for more details.

Audio Output
The Armmite F4 has no audio socket connect to the board as supplied, however the audio appears on the DAC
pins PA4 and PA5. See the later section Audio Output for information on connecting these to an amplifier.
MMBasic can generate audio in several formats ranging from simple sine wave tones through to playing FLAC
and WAV audio files. (MP3 is not supported because of high processor resources required to decode)
The output is high impedance suitable for feeding into an amplifier. It cannot directly drive a loudspeaker,
headphones or any low impedance load and might be damaged if that was attempted.

Extended WAV File Playback
The Armmite F4 can play WAV files (like the Micromite Plus) however, it is also capable of playing WAV
files recorded with sampling rates of 8 KHz,16KHz and 44.1KHz.

Temperature Sensor
The Dallas DS18B20 temperature sensor can be used to measure temperature. Support for the DS18B20 is built
into MMBasic – see the section Special Device Support in this manual for the details. Any pin can be used.

External I/O connectors

The pins on the development board have been allocated to various MMBasic functions as outlined in the table
in section Pin and Connector Capabilities.

W25Q16 Flash
STM32F407VET6 development board has a 16Mbit (ie 2MByte of 8 bits) windbond flash chip built in. The
MMBasic firmware uses part of it to implement the LIBRARY functionality and allow backup of the 4K
variable Ram. The rest is available to use from with an MMBasic program via SPI commands.
It is connected to SPI1 and its chip select pin is PB0. (35) Appendix E has an example program for formatting
and accessing it.

RST Key
Used to reset the Armmite F4 and start the bootup sequence as if the power had been cycled.

Key 0 Switch
User available key. Has special function to enable Serial Console if held while power is being applied.
Connects ground to PE4 pin when pressed.

Key 1 Switch
User available key. Has special function to reset MMBasic if held while power is being applied. Connects
ground to PE3 pin when pressed.

Key_UP Switch
Connects to pin PA0 via a 10K resistor.

LED D2 and D3
Two LEDs wired via 510 ohm resistors to 3.3v and are connect to IO pins PA6 and PA7 for immediate use to
get started on flashing a LED.

Page 18 Armmite F4 User Manual Page 18

Power LED
The power led D1 (green or red) is illuminated whenever power is applied.

WS2812 support
The Armmite F4 supports the WS2812 Led driver. This chip needs very specific timing to work properly and
by incorporating support in the Armmite F4 firmware the user can program these chips with minimum effort.
The command WS2812 is used to set the colours of the LEDs. There is no limit to the size of the WS2812
string supported.

GPS support
The Armmite F4 support connection of a GPS to any of the 4 serial interfaces. The command
 OPEN “COMn:baudrate” as GPS is used to enable reception of NMEA GPS messages. The GPS()
functions can then be used to interrogate the GPS data which is automatically parsed in the Armmite firmware.
In addition, the PRINT #GPS,string$ command allows sending a formatted frame to the GPS in an NMEA
message format, it is used to configure the GPS. For example: you can change the speed of the serial port, or
select certain frames, etc. The frame sent by user, must not end with the CRC (checksum) because MMBasic
automatically adds this CRC at the end of message.

OPTION VCC voltage
Option VCC voltage is used to tell the ADC in the Armmite F4 the value of the the VCC voltage. It is used
during analogue readings as the value for the external reference. It defaults to 3.3V if not set. See the section
Setting Option VCC for details on setting it using the refernce voltage embedded into each individual cip.

CPU SLEEP commands
The Armmite F4 CPU sleep command as follows:

CPU SLEEP
The wakeup pin is PA0, however any other COUNT pin (PE1, PE3, PE4 and PA8) can also be used to wake the
processor if enabled with SETPIN pinno, CIN or PIN or FIN.

CPU SLEEP time
The Armmite uses the RTC to generate an interrupt to wake the processor after a period of sleep. Any period
can be specified including fractions of seconds and because the RTC is used the timing will be accurate. Using
the embedded ARMMITE F4 date and time functions makes it easy to sleep until any particular time. e.g.

Midnight_tonight% = epoch(date$+” 00:00:00”)+86400 ‘epoch at start of day today + secs in a day
CPU SLEEP Midnight_tonight% - epoch(now) ‘ sleep until midnight tonight.

The R21 pullup resistor on the USB D+ data line prevents the CPU SLEEP [n] working when
using a USB console. Removing R21 will allow this to work with the USB console and has no
other detrimental effects.

Unsupported commands
If you are familiar with the Micromites then this list will save you looking for things that are not there.

 Changing CPU Speed, OPTION CPU SPEED is not available.

Page 19 Armmite F4 User Manual Page 19

Loading the MMBasic Firmware

Once you have the development board you need to load the MMBasic firmware. This only needs to be done
once unless you need to load an updated version.

The latest Armmite F4 software is normally available on The Back Shed (TBS) forum. You will need to scroll
through the thread and selected the latest version. Download it and extract the ArmmiteF407.bin or similar file
to your computer.

You will place the development board in Boot Loader mode by setting jumpers for BT0 and BT1 pins, connect
it to your computer via a USB cable and use the free STM32CubeProgrammer application to load the
firmware.
Appendix G at the end of this document gives a very detailed description of loading the firmware as well as
how to obtain the free STM32CubeProgrammer.
If you have not done so, you should go to Appendix H – Loading the Firmware now.
When you complete the steps there you should have the MMBasic command prompt and are ready to
go!

Program Memory not cleared when firmware updated
If you reload the firmware after you have been using the Armmite, note that loading the new firmware will not
clear any previously loaded program. If the new firmware has additional commands or functions then the
program maybe corrupt as command or function tokens may have changed. A NEW will clear the program. It
would need to be reloaded to convert to the new command tokens. In most cases the program is intact and will
still run correctly.

Options not cleared when firmware updated
If you reload the firmware after you have been using the Armmite, note that loading the new firmware will not
clear the previous options as seen via OPTION LIST. These are now stored in battery backed-up ram so
loading the firmware won’t change them. If you don’t want your original options, use OPTION RESET to set
the default options.i.e.

OPTION LCDPANEL ILI9341_16, RLANDSCAPE
OPTION TOUCH PB12, PC5

Saved variables not cleared when firmware updated
This is unlikely to be noticed or cause an issue. Its just here for completeness.
If you reload the firmware after you have been using the Armmite, note that loading the new firmware will not
clear any previous variables saved with VAR SAVE. These are now stored in battery backed-up ram so loading
the firmware won’t change them. You are unlikely to notice this as a NEW, LOAD program, AUTOSAVE or
XMODEM RECEIVE to get a program back into the Armmite will automatically clear the variables.
If you create a new program using the EDIT command and save it the variables are not cleared. If you do a
VAR RESTORE before any of the above commands do an implicit NEW then you could access the previous
variables. VAR CLEAR will also remove them.

If you have problems connecting, try these two procedures. Resetting MMBasic will recover from any
abnormal/unknown state by clearing the Program Memory, reseting Options to default and clearing save
variables.
Trouble Shooting USB Console also has some useful tips.

https://www.thebackshed.com/forum/ViewTopic.php?FID=16&TID=13464

Page 20 Armmite F4 User Manual Page 20

Power and Console Connections
USB Console (the default)
In the Armmite F4 all programming is done through the console. At the console you can enter commands, edit
programs, run programs and observe the output of your program – including error messages! This is by default
pointed to the USB connector on STM32F407VET6 development board. There is nothing that you need to do
on the Armmite F4 to use the USB console. Just plug the USB cable from the Armmite F4 into your host
computer and MMBasic will automatically create a virtual serial port over USB so that you can communicate
with it from a Windows, Linux or Macintosh computer using nothing more than the USB port.

The Armmite F4 has three options for the console input/outputs. These are the default USB console, a serial
console on COM1 or optional PS2 keyboard and LCD display. The PS2 keyboard and LCD display if enabled
as a console operate in parallel with the currently configured console, anything received from any of the inputs
is placed in the input queue for the interpreter or your program to read and anything outputted by your program
or the interpreter will be sent to all devices (if they are connected).

The communications protocol used is the CDC (Communication Device Class) protocol and there is native
support for this in Windows 10, Linux (the cdc-acm driver) and Apple OS/X. Macintosh users can refer to the
document "Using Serial Over USB on the Macintosh" on https://geoffg.net/OriginalColourMaximite.html.

You can then use a terminal emulator such as Tera Term to connect to this communications port and it will
work the same as if you were using a hardwired serial console. In Tera Term you do not have to specify a baud
rate because the USB connection will run as fast as it can.

Be aware however that the USB connection will be reset if the Armmite F4 is reset and there are many things
that can do this including the watchdog timer, the command CPU RESTART and so on.

Tera Term on Windows 10 now seems to be able to automatically reconnect the console after a reset so you
many not suffer the same frustration as past users.

If the loss of the USB console during development becomes an issue, the console can be switch to the serial
console and be accessed via a USB to serial bridge connected to the serial console pins on the Armmite F4
board.

Another aspect to be aware of is that you should not use the CPU SLEEP command while a USB session is
active. The results will be undefined but could possibly cause the Armmite F4 to crash and reboot.

On a Windows computer the Armmite F4 will appear as an
additional serial port in Device Manager as illustrated on
the right.
You also need a terminal emulator program on your
desktop computer. This program acts like an old fashioned
computer terminal where it will display text received from
a remote computer and any key presses will be sent to the
remote computer over the serial link.
The terminal emulator that you use should support VT100
emulation as that is what the editor built into the MMBasic expects. For Windows users it is recommended that
you use Tera Term as this has a good VT100 emulator and is known to work with the XModem protocol which
you can use to transfer programs to and from the Armmite F4 (Tera Term can be downloaded from: http://tera-
term.en.lo4d.com/). See the section VT100 Terminal Emulators for other options which will also be suitable.

Windows USB connection
On Windows 10 the driver for the USB console is included with Windows 10. On Win7 and earlier the USB
console requires STMicroelectronics Virtual COM Port drivers to be installed. (This driver is separate from the
drivers installed with STM32 Cube Programmer software). Virtual COM Port drivers at
www.st.com/en/development-tools/stsw-stm32102.html

https://geoffg.net/OriginalColourMaximite.html
http://tera-term.en.lo4d.com/
http://www.st.com/en/development-tools/stsw-stm32102.html

Page 21 Armmite F4 User Manual Page 21

Apple Macintosh USB connection
The Apple Macintosh (OS X) is somewhat easier as it has the device driver and terminal emulator built in.
First start the application ‘Terminal’ and at the prompt list the connected serial devices by typing in:

ls /dev/tty.*.

The USB to serial converter will be listed as something like /dev/tty.usbmodem12345. While still at the
Terminal prompt you can run the terminal emulator at 115200 bauds by using the command:

screen/dev/tty.usbmodem12345 115200

By default, the function keys will not be correctly defined for use in the Armmites built in program editor so
you will have to use the control sequences as defined in the section Full Screen Editor of this manual. To avoid
this, you can reconfigure the terminal emulator to generate these codes when the appropriate function keys are
pressed.

Linux USB connection
Instructions for Linux are here: http://www.thebackshed.com/forum/ViewTopic.php?FID=16&TID=12171

Power Requirements
The USB connector is for power and the serial console over USB. The power requirement of the Armmite F4
is 5V at 70mA (no LCD) up to 250mA (typical). This is within the capabilities of most USB chargers however
some PCs (especially older laptops) may have trouble supplying this. If your Armmite F4 is suffering from
intermittent issues such as reboots, errors reading the SD card, etc. then it would be worth changing the power
supply to one a with a much higher capacity (for example, 2 amps or more).
The Armmite F4 software requests the host to provide 500mA on the 5V pin of the USB connector. Where the
host supports this this should be enough to supply the Armmite F4 and most LCD panels. When one of the
larger SSD1963 panels that require a 5V connection, an alternate method of supplying 5V power may need to
be considered. See SSD1963 Power Considerations for more detail.

Powering from external 5V source
Many devices that have a choice of power via USB or a separate 5v supply have a jumper to selected which
option is used. The STM32F407VET6 does not. The USB 5v and the 5v pins on the board are connected
together by 0 ohm resistor R25. This means if you power via an external 5v supply connected to the 5v pin,
then this 5v will appear on the USB connector as well. This is not a problem if you are not connecting to the
USB console at the same time. In most cases even if you connect to the USB console at the same time there is
no issue, especially if you are connecting to both from the same computer/laptop. e.g. You are experimenting
with use of USB and Serial Console connected by a USB serial adapter.
If you want to power the board permanently from a 5V supply and want to remove any risk when connecting
via a USB console you can remove R25, or even replace with a schottky diode so that the board can still be
powered through the USB if required.

Switching to Serial Console (via Option Command)
By default, the Console is directed to the USB connector. It can be redirected to the serial port on the board by
either of these two methods.

If a working console on the USB is available connect and enter this command.
OPTION SERIAL CONSOLE ON
This routes the console to the serial connection COM1 on J6 of the board (near the SDCARD socket). The
pinout on this is compatible with many of the CP2102 USB/UART PCBs which can be plugged directly onto
the J6 header. In this mode the USB connection is completely disabled but you can still use the USB connection
to power the board. The board needs to be restarted. You need a USB to serial module to connect from the PC.
The terminal emulator and the serial port that it is used should be set to the Armmite F4 default of 115200 bauds 8
data bits and one stop bit. Using the OPTION BAUDRATE command the baud rate of the console can be
changed to any speed up to 921600 bps. Changing the console baud rate to a higher speed makes the full
screen editor much faster in redrawing the screen. If you have a reliable connection to the Armmite it is worth
changing the speed to at least 115200.

http://www.thebackshed.com/forum/ViewTopic.php?FID=16&TID=12171

Page 22 Armmite F4 User Manual Page 22

Once changed the console baud rate will be permanently remembered unless another OPTION BAUDRATE
command is used to change it. Using this command, it is possible to accidently set the baud rate to an invalid
speed and in that case the only recovery is to reset MMBasic as described below in OPTION RESET.
When the console is redirected to COM1 and a USB cable is plugged in the USB connector it will fail
to initialise correctly. This indicates the console is not on the USB connector.

Switching to Serial Console (via Key 0 at Restart)
If the USB console is not available for use or not working, then use this method.
Hold Key 0 on the development while restarting the board by connecting power or pressing the RST button.
The system will start up with the OPTION SERIAL CONSOLE ON already selected. Connect to the J6 serial
port as above.

Restoring USB Console (via Option Command)
To return to the USB console issue the following command from the serial console:
OPTION SERIAL CONSOLE OFF
will redirect to the USB console.
The USB cable will need to be removed and reinserted if it is in place, as the host computer will have marked it
faulty as it previously would not have initiated properly as a serial port.
After this the J6 header supports COM1 communications.

OPTION RESET
Issuing this command also return to the default state with the console directed to the USB connection. It will
also reset all other options to their default values. This for the Armmite F4 means enabling the default
ILI9341_P16 LCDPANEL and TOUCH.
The USB cable will need to be removed and reinserted if it is in place, as the host computer will have marked it
faulty as it previously would not have initiated properly as a serial port.

Restoring USB Console (via Key 1 at Restart)
If the serial console is not available, or its speed is unknown a full reset of MMBasic will restore the USB
Console.
Holding Key 1 on the development while restarting the board by connecting power or pressing the RST button
will reset MMBasic. This will clear all program and variable memory and clear all options.
It will also restore the USB console as the default.
The USB cable will need to be removed and reinserted if it is in place, as the host computer will have marked it
faulty as it previously would not have initiated properly as a serial port.

Armmite F4 interaction with USB console
The Armmite firmware controls the USB connection as follows:
On power up, if no USB connection is plugged in (separate 5V supply) console output is discarded.
On power up, if a USB connection is plugged in console output will be buffered until a terminal
emulator is connected.
Once running, if the USB connection is removed (separate 5V power) console output is discarded.

Page 23 Armmite F4 User Manual Page 23

Once running, if the USB connection is re-inserted, console output will be restored from the point at
which the USB was re-connected.

Using Serial Console via a USB – Serial Converter
It is unlikely your modern computer will have an actual serial port. The serial port is achieved using cheap and
popular USB to Serial converters.
The serial console when enabled defaults to 115200 bauds, which uses TTL signal levels. This is similar to the
RS232 interface on older personal computers but the TTL signal level is inverted and swings from zero to 3.3V.
There are many USB to serial converters on the market. These provide a TTL level serial interface on one side
and a USB interface on the other. When connected to your computer the converter will appear as a virtual
serial port. Recommended are converters based on the Silicon Labs CP2102 chip, they can be found on eBay
for a few dollars (search for "CP2102") and work perfectly with the Micromite and Armmite F4. CH340
USB/serial adaptors also work well. You should avoid converters based on the FTDI FT232RL chip as many
Chinese manufacturers use non genuine chips which will not work with the current Windows drivers.
The serial interface side of the converter will generally have a ground pin and a 5v power output pin and this
can be used to power the Armmite. The converter will also have two pins marked TX (or similar) for transmit
and RX (or similar) for receive. The TX pin of the serial converter must go to the RX pin of the Armmite and
the RX pin must go to the TX pin.
If you have a serial converter that operates at 5V you can still use it with the Armmite F4. All you need do is
place a 1K resistor in series with the transmit signal from the converter. The resistor will limit the current to a
safe level.
Below is a typical connection using the CP2102 converter. Note that the 3.3V output from the converter can be
as high as 4.3V so it would be best to connect the 5v output to the 5v connector on the Armmite and let it
convert to the correct voltage.

When you plug the USB side of the converter into your
computer you may have to load a driver to make it work with
the operating system. Once this is done you should note the port
number created by your computer for the virtual serial
connection. In Windows this can be done by starting Device
Manager and checking the "Ports (COM & LPT)" entry for a
new COM port as shown on the right.

VT100 Terminal Emulators
You also need a terminal emulator program on your desktop computer. This program acts like an old fashioned
computer terminal where it will display text received from a remote computer and any key presses will be sent

Page 24 Armmite F4 User Manual Page 24

to the remote computer over the serial link.
The terminal emulator that you use should support VT100
emulation as that is what the editor built into the Armmite
expects. For Windows users it is recommended that you use
Tera Term as this has a good VT100 emulator and is known to
work with the XModem protocol which you can use to transfer
programs to and from the Armmite F4 (Tera Term can be
downloaded from: http://tera-term.en.lo4d.com/).
The terminal emulator and the serial port that it is using should be
set to the Armmite F4 standard of 115200 bauds, 8 data bits and
one stop bit. The screen shot on the right shows the setup for Tera
Term. Note that the "Port:" setting will vary depending on which
USB port your USB to TTL serial converter was plugged into.

If you are using Tera Term do not set a delay between characters and if you are using Putty set the backspace
key to generate the backspace character.

Other terminals are MMEdit and GFXTerm and Putty.

MMEdit supports a VT100 emulation as well as an Ascii terminal and also allows the editing of programs
offline. MMEdit was written by Jim Hiley and can be downloaded for free from https://www.c-
com.com.au/MMedit.htm.

GFXterm is a simple terminal emulator for use with Micromite/Armmite computers running MMbasic. It
provides just enough VT100/ANSI emulation to use the inbuilt editor with an 80 column by 24 line screen size.
Both (local) serial and (remote) network connections are allowed. In addition, GFXterm supports a simple set
of graphics extensions that are suitable for drawing very basic rolling graphs. Mouse scroll wheel activity is
mapped to the cursor up/down keys, and will work with the internal editor. Linux and Windows versions
available at this link.
https://github.com/robert-rozee/GFXterm/tree/main/binaries

Wireless Console using ESP-01 ESP8266
This thread on TBS details setting up an ESP8266 connected to the COM1 port to give wireless access to the
console. The ESP-01 version is not very expensive and wireless connection can be very convenient.
http://www.thebackshed.com/forum/ViewTopic.php?TID=8440&P=1

Troubleshooting USB Console
If you cannot see the startup banner check the following:

 Reset the Armmite by retarting with KEY1 down to ensure it has the default options set and is using
the USB console.

 Ensure the device is not in boot loader mode. i.e. BT0 tied to 3.3v
 Check that a new serial port appears under Device Manager on windows when the Armmite is

connected.
 Check your terminal program is using that serial port when trying to connect.
 Try using TeraTerm, it is very robust.
 If you are using another terminal and have been previously using TeraTerm be aware that TeraTerm

reconnects automatically and will steal the connection before you can connect with the other terminal
e.g. MMEdit.

 On Windows 10 the driver for the USB console is included with Windows 10. On Win7 and earlier the
USB console requires STMicroelectronics Virtual COM Port drivers to be installed. (This driver is
separate from the drivers installed with STM32 Cube Programmer software). Virtual COM Port drivers

http://tera-term.en.lo4d.com/
https://www.c-com.com.au/MMedit.htm
https://www.c-com.com.au/MMedit.htm
https://github.com/robert-rozee/GFXterm/tree/main/binaries
http://www.thebackshed.com/forum/ViewTopic.php?TID=8440&P=1

Page 25 Armmite F4 User Manual Page 25

at www.st.com/en/development-tools/stsw-stm32102.html

Troubleshooting Serial Console
If you cannot see the startup banner try the following:

 ensure the Serial Console is enabled be restarting with KEY0 down.
 Try disconnecting the USB-serial converter and join its TX and RX pins. Then try typing something

into the terminal emulator. You should see your characters echoed back, if not it indicates a fault with
the converter or the terminal emulator.

 If the USB-serial converter checks out the fault could be related to the console connection to the
Armmite. Make sure that TX connects to RX and vice versa and that the baud rate is 115200.

 If you have an oscilloscope you should be able to see a burst of activity on the Armmites TX line on
power up. This is the Armmite sending its startup banner.

Resetting MMBasic
MMBasic can be reset to its original configuration using the following method:

 Holding KEY 1 down, while applying power or pressing the RST button. You can connect ground to
PE3 pin if you find it difficult to hold the small button down.

This will result in the program memory and saved variables being completely erased and all options (security
PIN, console baud rate, etc.) will be reset to their initial defaults. This includes setting the console to the USB.

http://www.st.com/en/development-tools/stsw-stm32102.html

Page 26 Armmite F4 User Manual Page 26

Pin and Connector Capabilities
STM32F407VET6 Pin function and connector positions
The capabilities and allocation of each pin are detailed in this table. MMBasic can address the pins via their pin
number or connector name. This manual will only use the connector name but the first two columns of the table
below show their correlation.

STM32F407VET6 MMBASIC TFT-FSMC Available Pins (No entry means unavailable)
PIN NAME Connector FUNCTIONS NAME PIN MMBASIC ADC EXT.

1 PE02 J2-11 IR DIN - DOUT
2 PE03 J2-12 Count 2 DIN - DOUT KEY1/INT2
3 PE04 J2-13 Count 3 DIN - DOUT KEY0/INT3
4 PE05 J2-14 PWM-3A DIN - DOUT TIM9_CH1
5 PE06 J2-15 PWM-3B DIN - DOUT TIM9_CH2
6 VBAT

7 PC13 J2-16
DIN – DOUT 3ma
(see notes below)

8 PC14 OSC32_IN
9 PC15 OSC32_OUT

10 GND GND
1,30
32

11 3.3V 3.3V 31
12 OSC_IN OSC8_IN
13 OSC_OUT OSC8_OUT
14 RST JTAG-15 NRST RST 2 15 JTAG-RST
15 PC00 J2-17 15 DIN - DOUT - AIN ADC_10 [A]
16 PC01 J2-18 16 DIN - DOUT - AIN ADC_11 [B]
17 PC02 J2-19 17 DIN - DOUT - AIN ADC_12 [C]
18 PC03 J2-20 18 DIN - DOUT - AIN ADC_13 [A]
19 VDD
20 VREF- J2-21
21 VREF+ J2-22
22 VDDA

23 PA00 J2-23 COM3-TX DIN - DOUT - AIN ADC_0 [A]
KEY_UP
WK_UP

24 PA01 J2-24 COM3-RX DIN - DOUT - AIN ADC_1 [A]
25 PA02 J2-25 COM4-TX DIN - DOUT - AIN ADC_2 [A]
26 PA03 J2-26 COM4-RX DIN - DOUT - AIN ADC_3 [A]
27 GND
28 3.3V
29 PA04 J2-27 DAC-1 DAC-1 (3.3v)
30 PA05 J2-28 DAC-2 DAC-2 (3.3v)
31 PA06 J2-29 PWM-1A DIN - DOUT - AIN ADC_6 [A] LED D2
32 PA07 J2-30 PWM-1B DIN - DOUT - AIN ADC_7 [A] LED D3
33 PC04 J2-31 33 DIN - DOUT - AIN ADC_14 [B]

34 PC05 J2-32 T_IRQ
PEN-
IRQ 27 DIN - DOUT - AIN ADC_15 [B]

35 PB00 J2-33 PWM-1C DIN - DOUT - AIN ADC_8 [A] F_CS
36 PB01 J2-34 LCD_BL BL 28 TIM3_CH4
37 PB02 J3-6 BOOT1 DIN - DOUT
38 PE07 J2-35 FSMC_D4 D4 14

Page 27 Armmite F4 User Manual Page 27

STM32F407VET6 MMBASIC TFT-FSMC Available Pins (No entry means unavailable)
PIN NAME Connector FUNCTIONS NAME PIN MMBASIC ADC EXT.
39 PE08 J2-36 FSMC_D5 D5 13
40 PE09 J2-37 FSMC_D6 D6 12
41 PE10 J2-38 FSMC_D7 D7 11
42 PE11 J2-39 FSMC_D8 D8 10
43 PE12 J2-40 FSMC_D9 D9 9
44 PE13 J2-41 FSMC_D10 D10 8
45 PE14 J2-42 FSMC_D11 D11 7
46 PE15 J2-43 FSMC_D12 D12 6
47 PB10 J2-44 I2C2-SCL DIN - DOUT
48 PB11 J2-45 I2C2-SDA DIN - DOUT
49 VCAP1 VCAP
50 3.3V VDD
51 PB12 J2-46 T_CS T_CS 24 DIN - DOUT
52 PB13 J2-47 SPI2-CLK T_CLK 23 DIN - DOUT
53 PB14 J2-48 SPI2-IN T_MISO 26 DIN - DOUT
54 PB15 J3-48 SPI2-OUT T_MOSI 25 DIN - DOUT
55 PD08 J3-47 FSMC_D13 D13 5
56 PD09 J3-46 FSMC_D14 D14 4
57 PD10 J3-45 FSMC_D15 D15 3
58 PD11 J3-44 VBUS_FS DIN - DOUT
59 PD12 J3-43 PWM-2A DIN - DOUT TIM4_CH1
60 PD13 J3-42 FSMC_A18 DC 21
61 PD14 J3-41 FSMC_D0 D0 18
62 PD15 J3-40 FSMC_D1 D1 17
63 PC06 J3-39 COM2-TX DIN - DOUT
64 PC07 J3-38 COM2-RX DIN - DOUT
65 PC08 J3-37 SDIO_D0
66 PC09 J3-36 SDIO_D1
67 PA08 J3-35 Count 4 DIN - DOUT INT4
68 PA09 J3-34 COM1-TX DIN - DOUT J6-TXD
69 PA10 J3-33 COM1-RX DIN - DOUT J6-RXD
70 PA11 J3-32 USB-DM USB D-
71 PA12 J3-31 USB-DP USB D+
72 PA13 JTAG-7 SWDIO DIN - DOUT 7 JTAG-TMS
73 VCAP2
74 GND
75 3.3V
76 PA14 JTAG-9 SWCLK DIN - DOUT 9 JTAG-TCK
77 PA15 J3-30 KBD_CLK DIN - DOUT 5 JTAG-TDI
78 PC10 J3-29 SDIO_D2
79 PC11 J3-28 SDIO_D3
80 PC12 J3-27 SDIO_CK
81 PD00 J3-26 FSMC_D2 D2 16
82 PD01 J3-25 FSMC_D3 D3 15
83 PD02 J3-24 SDIO_CMD
84 PD03 J3-23 KBD_DATA DIN - DOUT

Page 28 Armmite F4 User Manual Page 28

STM32F407VET6 MMBASIC TFT-FSMC Available Pins (No entry means unavailable)
PIN NAME Connector FUNCTIONS NAME PIN MMBASIC ADC EXT.
85 PD04 J3-22 FSMC_NOE RD 19
86 PD05 J3-21 FSMC_NWE WR 20
87 PD06 J3-20 87 DIN - DOUT
88 PD07 J3-19 FSMC_NE1 CS 22

89 PB03 J3-18 SPI_CLK DIN - DOUT
JP2-5 NRF-

SCK

90 PB04 JTAG-3 SPI_IN DIN - DOUT
JP2-7 NRF-

MISO

91 PB05 J3-17 SPI-OUT DIN - DOUT
JP2-6 NRF-

MOSI

92 PB06 J3-16 I2C-SCL DIN - DOUT
JP2-3

NRF_CE

93 PB07 J3-15 I2C-SDA DIN - DOUT
JP2-4

NRF_CS
94 BOOT0 J3-5 BOOT0

95 PB08 J3-14 PWM-2B DIN - DOUT
JP2-8 NRF-

IRQ
96 PB09 J3-13 PWM-2C DIN - DOUT TIM4_CH4
97 PE00 J3-12 97 DIN - DOUT
98 PE01 J3-11 COUNT 1 DIN - DOUT INT1
99 GND

100 3.3V

STM32F407VET6 Explanation of keys used in above table
The following summary includes information based on the authors interpretation of the STM32F407VET6 data
sheet and the schematic of the development board. These should be consulted for more detailed information.
An explanation of some of the codes used in the above table is also provided.

https://github.com/mcauser/BLACK_F407VE/blob/master/docs/STM32F407VET6_datasheet.pdf
https://github.com/mcauser/BLACK_F407VE/blob/master/docs/STM32F407VET6_schematics.pdf

Code or Item Details

DIN -DOUT

These pins can be used as digital output and input. They are 5V tolerant and can sink or
source a maximum of 25mA.

DIN-DOUT (3ma)
PC13

This pin, PC13 is suppied from VBAT and can only deliver 3mA. It cannot be used to
drive a LED. It has also in some usage situations been seen to interfere with the reliable
operation of the SDCARD. (It is next to PC12 the SDOI-CLK). As it is supplied by
VBAT it may have an effect on the life of the backup battery when the board is
powered off. It some case it may be better to avoid this pin if possible.

DIN – DOUT -AIN These pins are analogue capable. i.e. can be used to read voltage. They can be used as
digital output and input. They are 5V tolerant and can sink or source a maximum of
25mA EXCEPT when in the AIN analogue mode, as they are then connected to the
3.3v ADC and must not exceed 3.3v
The total current sunk or sourced for all pins combined cannot exceed 150mA in total.

DAC x (3.3v) DAC1 and DAC2 are not 5v tolerant. 3.3v only.
PULL-UP

Weak pull-ups to 3.3v are typically 40K ohms for all pins except for PA10 and PA12
which are 11K.

https://github.com/mcauser/BLACK_F407VE/blob/master/docs/STM32F407VET6_datasheet.pdf
https://github.com/mcauser/BLACK_F407VE/blob/master/docs/STM32F407VET6_schematics.pdf

Page 29 Armmite F4 User Manual Page 29

PULL-DOWN Weak pull-downs to GND are typically 40K ohms for all pins except for PA10 and
PA12 which are 11K
Pull-up and pull-down resistors are designed with a true resistance in series with a
switchable PMOS/NMOS. This MOS/NMOS contribution to the series resistance is
minimum (~10% order).

INTx COUNTx These 4 pins PE1, PE3, PE4 and PE8 have hardware interrupts and can be used with the
SETPIN CIN, PIN and FIN options for count, period and frequency measurements.

WK_UP This is the wakeup pin. It can be used to wake the CPU after a CPU SLEEP command.
Any of the 4 count pins will also wake the CPU if they are configured.

ADC_x [A]
ADC_x [B]
ADC_x [C]

These are 13 analogue capable pins that can be connected to the ADC. The [A], [B] or
[C] indicates which of the three input on the ADC they connect to. This is important
when using the ADC command, as three input channels must have an appropriate A, B
or C type pin. The ADC command in this manual details which pins can be used for
each input.

I2C Pullups Neither of the data line (SDA) or clock (SCL) for either of the I2C ports have pullup
resistors (to 3.3V) installed. These may need to be installed if not already on the
peripheral being use. The I2C OPEN command does enable weak pullups. I2C CLOSE
will disable them.

External
Components

A number of pins have some external components attached to them on the development
board. This needs to be considered if you want to use those pins.
PA14 SWCLK on the JTAG-9 pin can be used but has a 10K pullup
PA13 SWDIO on the JTAG-7 pin can be used but has a 10k pullup
PB2 BOOT1 has 10K pulldown to ground.

47 Digital Pins All digital pins can be used for digital I/O using the PIN() function and command and
use the pin name as the reference. For example, pin PE4 can be set to an output using
SETPIN PE4, DOUT and then the pin set high (i.e., to 3.3V) using the command
PIN(PE4) =1

KEY0 Key 0 or PE4 can be used to enable the Serial Console. If the pin is connected to ground
or KEY 0 held down on power up or reset, then the Serial Console it enabled at start up.
All other options are reset to their default values and any program erased.

KEY1 Key 1 or PE3 can be used to completely reset the Armmite F4 to its "factory default"
condition. If the pin is connected to ground or KEY 1 held down on power up all
options will be reset to their defaults and any program in flash memory erased. Note
that external circuitry connected to this pin (e.g., a capacitor) must not look like a short
circuit at power up as this might trigger a reset.

Key RST This resets the CPU. Has the same effect as disconnecting and reconnecting power.
During the restart the state of KEY 0 and KEY 1 are tested to see if any special action is
required, otherwise MMBasic is started. If OPTION AUTORUN ON is set any
program in flash is also automatically run.

K_UP K_UP connects GND to the PA0 pin when pressed.
NRF2401 Socket SPI and I2C both appear at this socket. It is a convenient place to connect to them.

Page 30 Armmite F4 User Manual Page 30

STM32F407VET6 Connector and Pin Layout

5V 5V 3.3v SDA MOSI PB8 3.3V 3.3V
5V 5V GND SCL CLK MISO TX RX GND 5V 3.3V 3.3V
3.3V 3.3V BT0 BT1
3.3V 3.3V GND GND
GND GND GND GND

IR PE2 PE3 PE1 PE0 DIO

DIO-INT PE4 PE5 PB9 PB8 PWM-2B

PWM-3B PE6 PC13 PB7 PB6 I2C-SCL

DIO-AIN PC0 PC1 PB5 PB3 SPI-CLK

DIO-AIN PC2 PC3 PD7 PD6 DIO

VR- VR+ PD5 PD4 n/a

COM3-TX PA0 PA1 PD3 PD2 SDIO-CMD

COM4-TX PA2 PA3 PD1 PD0 n/a

DAC-1 PA4 PA5 PC12 PC11 SDIO-3

PWM-1A PA6 PA7 PC10 PA15 KBD-CLK

DIO-AIN PC4 PC5 PA12 PA11 USB-

PWM-1C PB0 PB1 PA10 PA9 COM1-TX

n/a PE7 PE8 PA8 PC9 SDIO-1

n/a PE9 PE10 PC8 PC7 COM2-RX

n/a PE11 PE12 PC6 PD15 n/a

n/a PE13 PE14 PD14 PD13 n/a

n/a PE15 PB10 PD12 PD11 DIO

I2C2-SDA PB11 PB12 PD10 PD9 n/a

SPI2-CLK PB13 PB14 PD8 PB15 SPI2-OUT

USB

SDCard

NRF2401

J2

COM4-RX

DAC-2

PWM-1B

T_IRQ

PE3 DIO-INT Digital pin with hardware interrupt.Can do
PIN, CIN and FIN measurements.
(Period, Count Frequency

PC1 DIO-
AIN

13 analogue capable pins. Not all shown
as other special functions shown instead
if they exist.

J6

DIO-INT

PWM-3A

DIO

DIO-AIN

PC5

DIO-AIN

COM3-RX T-IRQ

SDIO-2

SDIO-CLK

J3

n/a

I2C2-SCL

SDIO-0

DIO-INT

COM1-RXLCD_BL

n/a

n/a

n/a

T_CS

SPI2-IN

Used by FSMC LCD connector. Never
availble to MMBasic even if LCD not
configured.

Used for SDCARD support. Never
available to MMBasic

n/a

n/a

PWM-2A

n/a

COM2-TX

DIO-INT

USB+

PWM-2C

I2C-SDA

SPI-OUT

n/a

n/a

KBD-DATA

J1

STM32F407VET6 Connector and Pin Layout

FSMC Connector - See LCDPanel section for
pin details.

The NRF2401 socket provides access to the SPI pins.
I2C also appears on this socket.

JTAG Connector

PC13 DIO 47 pins capable of digital input and
output. Not all shown as other special
functions shown instead if they exist.

Used by FSMC LCD connector for LCD
support. Available to MMBasic if LCD not
configured.

Legend

COM1 or Serial Console

n/a

PE7 n/a

PC11 SDIO

STM32F407VET6 Board Versions
There appears to be a number of different variations of the STM32_F4VE board. The know differences are
summarised below. The will all work with the latest version of the software without modification. The versions
are on the silkscreen on the back of the board.

Version Details
V2.0 There are some reports this board needs to have the BT1 jumper in place when programing. The

circuit indicates it should be to GND without needing the jumper, but it may be required.
V2.1
V2.3

These seem to match the schematic. Pullup resistors as indicated on the schematic. SMD resistors
are descrete components.

V33 This is the latest version being supplied. It does not have pullups on the SDCARD pins as shown
on the schematic and as supplied on the earlier version. The MMbasic firmware now supports the
SDCARD without the need for these pullups. The SMD components are smaller and not all
resistors are descrete components

Page 31 Armmite F4 User Manual Page 31

STM32F407VET6 Pins by Function

Function Pins

COM1
TX - PA9
RX-PA10
OPTION SERIAL CONSOLE - to use as a serial console

COM2
TX - PC6
RX - PC7

COM3
TX - PA0
TX- PA1

COM4
TX - PA3
RX -PA2

I2C
SCL - PB6 (Can be also pickup from the NRF2401 socket)
SDA - PB7 (Can be also pickup from the NRF2401 socket)

I2C2
SCL - PB10
SDA - PB11

SPI
CLK - PB3 (Can be also pickup from the NRF2401 socket)
IN -PB4 (MISO) (not broken out to J2 or J3 - Pickup from the NRF2401 socket)
OUT - PB5 (MOSI) (Can be also pickup from the NRF2401 socket)

SPI2

CLK - PB13
IN - PB14 (MISO)
OUT - PB15 (MOSI)

DAC
1-PA4 (Not 5V tolerant 3.3v only)
2-PA5 (Not 5v tolerant 3.3v only)

PWM 1
1A -PA06
1B- PA07
1C- PB0

PWM 2
2A- PD12
2B- PB8 (Can be also pickup from the NRF2401 socket. Is also used as NRF2401 IRQ)
2C- PB9

PWM 3
3A- PE5
3B- PE6

KEYBOARD
CLOCK - PA15
DATA - PD3

Count
Pins

PE1, PE3, PE4 and PA8 have hardware interrupts. They can be used with SETPIN CIN,FIN and PIN
parameters for counting, frequency and period measurements

WAKE UP
PA0 is the wake up pin. K_UP will ground it when pressed.
The count pins will also cause a wake up if configured.

Analogue
Pins

The 13 pins PC0, PC1, PC2, PC3, PA0, PA1, PA2, PA3, PA6, PA7, PC4, PC5 and PB0 can be used as
analogue pins. i.e. Capable of voltage measurement. Use SETPIN with AIN parameter.

ADC Pins

ch1 PC0, PC3, PA0, PA1, PA2, PA3, PA6, PA7, PB0 (Analogue A pins)
ch2 PC2 (Analogue C pin)
ch3 PC1, PC4, PC5 (Analogue B pins)
The ADC has three input channels. The pins available to use for each channel are show above.
When connected to the ADC they must not exceed 3.3v

Page 32 Armmite F4 User Manual Page 32

STM32F407VET6 Modifications
You do not need to make any modifications to the board to use it. This is a great thing about this board, its
ready to go when you get it, just load the firmware. The modifications shown below are only required if you
need to resolve a related issue. Removing components from the board is relatively easy, to put them back is a
little more difficult.

Component
or Issue Details Circuit

Detail

R21

The R21 pullup resistor on the USB D+ data line
prevents the CPU SLEEP [n] working when using a
USB console. Removing R21 will allow this to work
with the USB console and has no other detrimental
effects. This can safely be removed if you want to use
CPU SLEEP n with the USB console.
On the latest V33 board received R21 is in a diferent
location and may not have the same function.

 R25

The USB 5v and the 5v pins on the board are
connected together by 0 ohm resistor R25. This means
if you power via an external 5v supply connected to
the 5v pin, then this 5v will appear on the USB
connector as well. If you want to power the board
permanently from a 5V supply and want to remove
any risk when connecting via a USB console you can
remove R25.

D2

Diode D2 and resistor R13 on PA6 to 3.3v
This is an analogue pin and the presence to the diode/
resistor to 3.3v would affect any voltage reading. You
would need to remove either component if this is an issue.

D3

Diode D3 and resistor R14 on PA7 to 3.3v
This is an analogue pin and the presence to the diode/
resistor to 3.3v would affect any voltage reading. You
would need to remove either component if this is an issue.

PA13 SWDIO
This pin has a 10K pullup resistor R2 to 3.3v installed. This
will normally not be a problem and in many cases it what
you want. Its listed here for information.

PA14 SWCLK
This pin has a 10K pulldown resistor R9 to Gnd installed.
This will normally not be a problem. Its listed here for
information.

PA15
KBD_CLK

A 4.7K pullup is normally recommend on KBD_CLK when
connecting a PS2 keyboard. This 10K R3 resistor should be
probably considered when deciding the actual value to use.
The internal pullup and this resistor may be enough.

PB4
SPI_IN

Has a 10K pullup resistor R4 to 3.3v Not known to affect
the operation of the pin as SPI_IN

PB3 SPI_CLK Has a 10K pullup resistor R1 to 3.3v Not known to have any
effect on operation of pin as SPI_CLK

R1-R4
On the latest V33 board received R1-R4 are not discrete
components, but are a resistor package.

Page 33 Armmite F4 User Manual Page 33

STM32F407VET6 MINI Pin function and connector positions
The table shows pin allocation for the STM32407VET6 MINI. It is essentially the same as the original but with
the FSMC connector deleted. The pins used by the FSMC are still not available to MMBasic. The table shows a
suggested rearrangement of the T_CS and T_IRQ pins and allocation for the LCD D/C and LCD-RSTpins to
best suit the connector layout for J1 and J4 connectors. The KBD pins are reused as general IO pins as no
keyboard would be used. PD3 the old KBD-DATA pin is notionally allocated as the SPI LCD-CS pin. The old
KBD-CLK pin is used for F-CS. Other pins can be used if desired.

A schematic of this board is availble at the link below.
https://www.thebackshed.com/forum/uploads/Volhout/2020-08-06_211055_STM32F407VX_M_schematics.pdf

STM32F407VET6 MINI MMBASIC LCD Type Available Pins (No entry means unavailable)
PIN NAME Connector FUNCTIONS 16Bit SPI MMBASIC ADC EXT.

1 PE02 J2-11 IR DIN - DOUT
2 PE03 J2-12 Count 2 DIN - DOUT KEY1/INT2
3 PE04 J2-13 Count 3 DIN - DOUT KEY0/INT3
4 PE05 J2-14 PWM-3A DIN - DOUT TIM9_CH1
5 PE06 J2-15 PWM-3B DIN - DOUT TIM9_CH2
6 VBAT

7 PC13 J2-16
DIN – DOUT 3ma
(see notes below)

8 PC14 OSC32_IN
9 PC15 OSC32_OUT

10 GND GND GND
11 3.3V 3.3V 3.3/5V (ILI9481 needs 5V)
12 OSC_IN OSC8_IN
13 OSC_OUT OSC8_OUT
14 RST RST KEY NRST RST
15 PC00 J2-17 15 DIN - DOUT - AIN ADC_10 [A]
16 PC01 J2-18 16 DIN - DOUT - AIN ADC_11 [B]
17 PC02 J2-19 17 DIN - DOUT - AIN ADC_12 [C]
18 PC03 J2-20 18 DIN - DOUT - AIN ADC_13 [A]
19 VDD

https://www.thebackshed.com/forum/uploads/Volhout/2020-08-06_211055_STM32F407VX_M_schematics.pdf

Page 34 Armmite F4 User Manual Page 34

STM32F407VET6 MINI MMBASIC LCD Type Available Pins (No entry means unavailable)
PIN NAME Connector FUNCTIONS 16Bit SPI MMBASIC ADC EXT.
20 VREF- J2-21
21 VREF+ J2-22
22 VDDA

23 PA00 J2-23 COM3-TX DIN - DOUT - AIN ADC_0 [A]
KEY_UP
WK_UP

24 PA01 J2-24 COM3-RX DIN - DOUT - AIN ADC_1 [A]
25 PA02 J2-25 COM4-TX DIN - DOUT - AIN ADC_2 [A]
26 PA03 J2-26 COM4-RX DIN - DOUT - AIN ADC_3 [A]
27 GND
28 3.3V
29 PA04 J2-27 DAC-1 DAC-1 (3.3v)
30 PA05 J2-28 DAC-2 DAC-2 (3.3v)
31 PA06 J2-29 PWM-1A DIN - DOUT - AIN ADC_6 [A] LED D2
32 PA07 J2-30 PWM-1B DIN - DOUT - AIN ADC_7 [A] LED D3
33 PC04 J2-31 33 DIN - DOUT - AIN ADC_14 [B]
34 PC05 J2-32 34 D/C DIN - DOUT - AIN ADC_15 [B]
35 PB00 J2-33 PWM-1C DIN - DOUT - AIN ADC_8 [A]
36 PB01 J2-34 LCD_BL BL BL BACKLIGHT CMD TIM3_CH4
37 PB02 J3-6 BOOT1 DIN - DOUT
38 PE07 J2-35 FSMC_D4 D4
39 PE08 J2-36 FSMC_D5 D5
40 PE09 J2-37 FSMC_D6 D6
41 PE10 J2-38 FSMC_D7 D7
42 PE11 J2-39 FSMC_D8 D8
43 PE12 J2-40 FSMC_D9 D9
44 PE13 J2-41 FSMC_D10 D10
45 PE14 J2-42 FSMC_D11 D11
46 PE15 J2-43 FSMC_D12 D12
47 PB10 J2-44 I2C2-SCL DIN - DOUT
48 PB11 J2-45 I2C2-SDA DIN - DOUT
49 VCAP1 VCAP
50 3.3V VDD
51 PB12 J2-46 51 RST DIN - DOUT
52 PB13 J2-47 SPI2-CLK T_CLK T_CLK DIN - DOUT
53 PB14 J2-48 SPI2-IN T_MISO T_MISO DIN - DOUT
54 PB15 J3-48 SPI2-OUT T_MOSI T_MOSI DIN - DOUT
55 PD08 J3-47 FSMC_D13 D13
56 PD09 J3-46 FSMC_D14 D14
57 PD10 J3-45 FSMC_D15 D15
58 PD11 J3-44 VBUS_FS DIN - DOUT
59 PD12 J3-43 PWM-2A DIN - DOUT TIM4_CH1
60 PD13 J3-42 FSMC_A18 DC
61 PD14 J3-41 FSMC_D0 D0
62 PD15 J3-40 FSMC_D1 D1
63 PC06 J3-39 COM2-TX DIN - DOUT
64 PC07 J3-38 COM2-RX DIN - DOUT
65 PC08 J3-37 SDIO_D0

Page 35 Armmite F4 User Manual Page 35

STM32F407VET6 MINI MMBASIC LCD Type Available Pins (No entry means unavailable)
PIN NAME Connector FUNCTIONS 16Bit SPI MMBASIC ADC EXT.
66 PC09 J3-36 SDIO_D1
67 PA08 J3-35 Count 4 DIN - DOUT INT4
68 PA09 J3-34 COM1-TX DIN - DOUT
69 PA10 J3-33 COM1-RX DIN - DOUT
70 PA11 J3-32 USB-DM USB D-
71 PA12 J3-31 USB-DP USB D+
72 PA13 J1-4 SWDIO/T-CS T-CS T-CS DIN - DOUT
73 VCAP2
74 GND
75 3.3V
76 PA14 J1-5 SWCLK/T-IRQ PEN-IRQ T-IRQ DIN - DOUT
77 PA15 J3-30 F-CS DIN - DOUT
78 PC10 J3-29 SDIO_D2
79 PC11 J3-28 SDIO_D3
80 PC12 J3-27 SDIO_CK
81 PD00 J3-26 FSMC_D2 D2
82 PD01 J3-25 FSMC_D3 D3
83 PD02 J3-24 SDIO_CMD
84 PD03 J3-23 SPI LCD CS LCD-CS DIN - DOUT
85 PD04 J3-22 FSMC_NOE RD
86 PD05 J3-21 FSMC_NWE WR
87 PD06 J3-20 87 DIN - DOUT
88 PD07 J3-19 FSMC_NE1 CS
89 PB03 J3-18 SPI_CLK DIN - DOUT
90 PB04 W25Q16-2 SPI_IN DIN - DOUT
91 PB05 J3-17 SPI-OUT DIN - DOUT
92 PB06 J3-16 I2C-SCL DIN - DOUT
93 PB07 J3-15 I2C-SDA DIN - DOUT
94 BOOT0 J3-5 BOOT0
95 PB08 J3-14 PWM-2B DIN - DOUT
96 PB09 J3-13 PWM-2C DIN - DOUT TIM4_CH4
97 PE00 J3-12 97 DIN - DOUT
98 PE01 J3-11 COUNT 1 DIN - DOUT INT1
99 GND

100 3.3V

The MISO pin PB4 is not broken out to a connector. It does however, appear on pin 2 of the flash chip.
RST pin is not broken out to a connector. It does appear on RST Key.
The option commands to match this pin allocation are as below for Touch and SPI LCD Panels:

OPTION LCDPANEL controller, orientation, PC5, PB12, PD3
OPTION TOUCH PA13, PA14

Page 36 Armmite F4 User Manual Page 36

STM32F407VET6 MINI Connector and Pin Layout

J2 J3

IR PE2 PE3 PE0 PE1 DIO-INT

DIO-INT PE4 PE5 PB8 PB9 PWM-2C

PWM-3B PE6 PC13 PB6 PB7 I2C-SDA

DIO-AIN PC0 PC1 PB3 PB5 SPI-OUT

DIO-AIN PC2 PC3 PD6 PD7 fsmc_CS

COM3-TX PA0 PA1 PD4 PD5 fsmc_WR

COM4-TX PA2 PA3 PD2 PD3 SPI LCD-CS

DAC-1 PA4 PA5 PD0 PD1 fsmc_D3

PWM-1A PA6 PA7 PC11 PC12 SDIO-CLK

DIO-AIN PC4 PC5 PA15 PC10 SDIO-2

PWM-1C PB0 PB1 PA11 PA12 USB+

fsmc_D4 PE7 PE8 PA9 PA10 COM1-RX

fsmc_D6 PE9 PE10 PC9 PA8 DIO-INT

fsmc_D8 PE11 PE12 PC7 PC8 SDIO-0

fsmc_D10 PE13 PE14 PD15 PC6 COM2-TX

fsmc_D12 PE15 PB10 PD13 PD14 fsmc_D0

I2C2-SDA PB11 PB12 PD11 PD12 PWM-2A

SPI2-CLK PB13 PB14 PD9 PD10 fsmc_D15

VREF+ VDDA PB15 PD8 fsmc_D13

GND GND GND GND
GND GND MISO SPI2-CLK RST MOSI D/C BLK 3.3V 3.3V
3.3V 3.3V J4 3.3V GND PB14 PB13 PB12 PB15 PC5 PB01 5V 5V

1 2 3 4 5 6 7 8
SWCLK

T-IRQ
SWDIO

T-CS

Key 1 PE3 J1 PA14 PA13 GND 3.3V BT0
Key 0 PE4 5 4 3 2 1

USB

K1 RST

F-CS

SDIO-3

SDIO-CMD

fsmc_D2

SPI2-OUT

fsmc_D14

DIO

fsmc_DC

fsmc_D1

COM2-RX

SDIO-1

COM1-TX

fsmc_D9

DIO

PWM-2B

I2C-SCL

SPI-CLK

DIO

LCD_BL

fsmc_D5

SPI2-IN

Keyboard not used. PA15 released to be F-CS for W25Q16. PD3
released asgeneral for SPI LCD-CS

fsmc_D11

PC13 DIO 47 pins capable of digital input and output. Not all
shown as other special functions shown instead if they
exist.

I2C2-SCL

LCD CS

PC1 DIO-
AIN

13 analogue capable pins. Not all shown as other
special functions shown instead if they exist.

fsmc_D7

SDIO Used for SDCARD support. Never available to
MMBasicDIO-AIN

USB-

COM3-RX

PC5
PB12

D/C
CS

T-CS and T-IRQ by default, but reallocate for SPI LCD
RSTand D/C pins so all are on J4. Allocate PA13 and
PA14 for use as T-CS and T-IRQ

COM4-RX

DAC-2

fsmc_RD

PWM-1B

PE1,PE3
PE4,PA8

DIO-
INT

Digital pin with hardware interrupt.Can do PIN, CIN and
FIN measurements. (Period, Count Frequency

D/C RS

STM32F407VET6 Mini Connector and Pin Layout

SDCard

SPI2------->

Legend
DIO-INT PE7 n/a Reserved for FSMC LCD connector. Never availble to

MMBasic.PWM-3A

DIO

DIO-AIN PC11

STM32F407VET6 MINI Differences
It is physically smaller.
- W25Q16 flash chip select on pin PA15 (versus PB0 on F4)
- BOOT1 fixed to GND (that is fine)
- A LED connected to PA1 (versus 2 LEDs at PA6 and PA7 on F4)

No FSMC parallel connector
T-CS and T_IRQ move to PA13 and PA14 (not mandatory but frees them for LCD use)
PB12 and PC5 now used for RST and D/C for SPI LCDs
Keyboard pins PA15 and PD3 released for use, as keyboard would not be required.
F-CS is now PA15 (was PB0)
KEY 0 not present, need to jumper GND directly to PE4 to switch to serial console at restart.
Serial Console is picked up from PA9 and PA10
- no battery holder, 3V backup needs to be connected externally if required. B1 + and – connector.

If the board is modified as described below is can be used to support P16 parallel displays despite not having
the FSMC connector. All the required pins are available on the other headers once the RST pin is routed.

Page 37 Armmite F4 User Manual Page 37

STM32F407VET6 MINI – Modification to Route RST and SPI-IN
The PB4 pin, MISO for SPI1 is not routed to a header. The RST pin is also not routed to a header. This
modification allows these pins to be made available on the header where the SDIO-2 and SDIO-CLK appear at
PC10 and PC12. These are not required on the header and are recoverd for use by this modification. The SDIO-
3 pin PC11 is also recovered as part of the modification. The SDIO tracks to the SDCARD route underneath the
board and remain in tack, only the appearance at the PC10 and PC12 pins is disconnected.
The SDIO-3 connection at PC11 is drilled out with
2mm bit to allow two wires to pass through the board.
The tracks to PA10 and PA12 are cut at the top of the
board so they no longer reach the two pins. A wire is
run from pin 2 on the W25Q16 flash chip via the hole
and connected to PC12, this now becomes the PB4 pin
and is MISO for SPI1.

A wire is run from the RST Key via the hole and
connected to PC10, which now becomes the RST
header pin.

The wires attached to PC10 and PC12 on the
underside of the board

STM32F407VET6 MINI Connector and Pin Layout -After Modification

J2 J3

IR PE2 PE3 PE0 PE1 DIO-INT

DIO-INT PE4 PE5 PB8 PB9 PWM-2C

PWM-3B PE6 PC13 PB6 PB7 I2C-SDA

DIO-AIN PC0 PC1 PB3 PB5 SPI-OUT

DIO-AIN PC2 PC3 PD6 PD7 fsmc_CS

COM3-TX PA0 PA1 PD4 PD5 fsmc_WR

COM4-TX PA2 PA3 PD2 PD3 SPI LCD-CS

DAC-1 PA4 PA5 PD0 PD1 fsmc_D3

PWM-1A PA6 PA7 O PB4 SPI-IN

DIO-AIN PC4 PC5 PA15 RST fsmc_RST

PWM-1C PB0 PB1 PA11 PA12 USB+

fsmc_D4 PE7 PE8 PA9 PA10 COM1-RX

fsmc_D6 PE9 PE10 PC9 PA8 DIO-INT

fsmc_D8 PE11 PE12 PC7 PC8 SDIO-0

fsmc_D10 PE13 PE14 PD15 PC6 COM2-TX

fsmc_D12 PE15 PB10 PD13 PD14 fsmc_D0

I2C2-SDA PB11 PB12 PD11 PD12 PWM-2A

SPI2-CLK PB13 PB14 PD9 PD10 fsmc_D15

VREF+ VDDA PB15 PD8 fsmc_D13

GND GND GND GND
GND GND MISO SPI2-CLK RST MOSI D/C BLK 3.3V 3.3V
3.3V 3.3V J4 3.3V GND PB14 PB13 PB12 PB15 PC5 PB01 5V 5V

1 2 3 4 5 6 7 8
SWCLK

T-IRQ
SWDIO

T-CS

Key 1 PE3 J1 PA14 PA13 GND 3.3V BT0
Key 0 PE4 5 4 3 2 1

STM32F407VET6 Mini Connector and Pin Layout

K1 RST
SDCard

Legend
DIO-INT PE7 n/a Reserved for FSMC LCD connector. Never availble to

MMBasic. Used for parrallel displays.
DIO

PWM-3A PWM-2B

DIO I2C-SCL

DIO-AIN PC11 SDIO Used for SDCARD support. Never available to
MMBasic

SPI-CLK

DIO-AIN DIO

COM3-RX fsmc_RD

COM4-RX PC5
PB12

D/C
CS

T-CS and T-IRQ by default, but reallocate for SPI LCD
RSTand D/C pins so all are on J4. Allocate PA13 and
PA14 for use as T-CS and T-IRQ

SDIO-CMD

DAC-2 fsmc_D2

PWM-1B Drilled Out

D/C RS PE1,PE3
PE4,PA8

DIO-
INT

Digital pin with hardware interrupt.Can do PIN, CIN and
FIN measurements. (Period, Count Frequency

F-CS

LCD_BL USB-

fsmc_D5 COM1-TX

LCD RST DIO

SPI2-IN fsmc_D14

fsmc_D7 PC1 DIO-
AIN

13 analogue capable pins. Not all shown as other
special functions shown instead if they exist.

SDIO-1

fsmc_D9 COM2-RX

fsmc_D11 fsmc_D1

USB

AFTER MODIFICATION
PB4 and RST routed by adding wires

Keyboard not used. PA15 released to be F-CS for W25Q16. PD3
released asgeneral for SPI LCD-CS

SPI2-OUT

SPI2------->

I2C2-SCL PC13 DIO 47 pins capable of digital input and output. Not all
shown as other special functions shown instead if they
exist.

fsmc_DC

Page 38 Armmite F4 User Manual Page 38

Using MMBasic

Commands and Program Input
At the command prompt you can enter a command and it will be immediately run. Most of the time you will
do this to tell the Armmite to do something like run a program or set an option. But this feature also allows you
to test out commands at the command prompt.

To enter a program, the easiest method is to use the EDIT command. (type EDIT at the command prompt) This
will invoke the full screen program editor which is built into MMBasic and is described Full Screen Editor
section. It includes advanced features such as search and copy, cut and paste to and from a clipboard.

You can also compose the program on your desktop computer using something like Notepad and then transfer
it to the Armmite via the XModem protocol (see the XMODEM command).

You can also type a program (or paste it from the windows clipboard if you have copied it from somewhere) by
using the AUTOSAVE command to stream it via the serial port. At the command prompt type AUTOSAVE,
then paste the clipboard into the terminal (or just type what you want) and when finished do a CNTRL Z to
save the program. (On TeraTerm right mouse click will open the paste window.)

Another very convenient method of writing and debugging a program is to use MMEdit. This is a program
running on your Windows computer (also will run on Linux under Wine) which allows you to edit your
program on your computer then transfer it to the Armmite with a single click of the mouse. MMEdit was
written by Jim Hiley and can be downloaded for free from https://www.c-com.com.au/MMedit.htm.
There are several other utilities at this site which may be useful.

With all of these methods of entering and editing a program the result is saved in non-volatile flash memory
(this is transparent to the user). With the program held in flash memory it means that it will never be lost, even
when the power is unexpectedly interrupted or the processor restarted.

One thing that you cannot do is use the old BASIC way of entering a program which was to prefix each line
with a line number. Line numbers are optional in MMBasic so you can still use them if you wish but if you
enter a line with a line number at the prompt MMBasic will simply execute it immediately.

Editing the Command Line
When entering a line at the command prompt the line can be edited using the left and right arrow keys to move
along the line, the Delete key to delete a character and the Insert key to switch between insert and overwrite.
At any point the Enter key will send the line to MMBasic which will execute it.
The up and down arrow keys will move through a history of previously entered command lines which can be
edited and reused. See Full Screen and Commandline Editors for more details.

Shortcut Keys at Commandline
When you are using a VT100 compatible terminal emulator on the console you can use the following function
keys to insert the following commands at the command prompt:

F2 RUN
F3 LIST
F4 EDIT
F5 Sends ESC sequence to clear the VT100 screen
F10 AUTOSAVE
F11 XMODEM RECEIVE
F12 XMODEM SEND

Pressing the key will insert the text at the command prompt (except for F5 whichs sends back to the VT100
terminal), just as if it had been typed on the keyboard.

https://www.c-com.com.au/MMedit.htm

Page 39 Armmite F4 User Manual Page 39

Shortcut Keys in AUTOSAVE
The AUTOSAVE commands sets the console waiting to accept a program. Anything typed to pasted in is
interpreted as a program. The following keys sequences can be used to signal the end of the program and to
trigger the saving of the entered text.

CNTRL+Z Saves the program
F1 Saves the program
F2 Saves the program and immediately runs it.

Line Numbers and Program Structure
The structure of a program line is:
[line-number] [label:] command arguments [: command arguments] …
A label or line number can be used to mark a line of code.
A label has the same specifications (length, character set, etc) as a variable name but it cannot be the same as a
command name. When used to label a line, the label must appear at the beginning of a line but after a line
number (if used) and be terminated with a colon character (:).
Commands such as GOTO can use labels or line numbers to identify the destination (in that case the label does
not need to be followed by the colon character). For example:
GOTO xxxx
- - -
xxxx: PRINT "We have jumped to here"
Multiple commands separated by a colon can be entered on the one line (as in INPUT A : PRINT B).

Running or Interrupting a Program
A program is set running by the RUN command. You can interrupt MMBasic and the running program at any
time by typing CTRL-C on the console input and MMBasic will return to the command prompt.
You can list a program in memory with the LIST command. This will print out the program while pausing
after every page.
You can completely erase the program by using the NEW command.
Programs in the Armmites and Micromites is held in non-volatile flash memory. This means that it will not be
lost if the power is removed and, if you have the AUTORUN feature turned on, the Micromite/Armmite will
start by automatically running the program when power is restored (use the OPTION command to turn
AUTORUN on).

Saved Variables
The Armmite F4 allows the saving of up to 4K of data in battery backed up RTC RAM. This is achieved with
the VAR SAVE command which will save the variables listed on its command line in to the battery backed up
RAM. These variables can be restored with the VAR RESTORE command which will add all the saved
variables to the variable table of the running program. Normally this command is placed near the start of a
program so that the variables are ready for use by the program.
This facility is intended for saving calibration data, user selected options and other items. This is true RAM and
is not subject to wear the same way as the flash used in the Micromites, so can be used as frequently as
required. This area is cleared whenever a new program is loaded or VAR CLEAR is used.

Timing
MMBasic has a number of features that make it easy to time events and control external circuitry that needs
timing.

MMBasic maintains an internal clock. You can get the current date and time using the DATE$ and TIME$
functions and you can set them by assigning the new date and time to them. The calendar will start from zero
each time Armmite is first powered up except if the RTC returns a realistic date (i.e. > 2018) in which case it
will set its time from the battery backed-up RTC included in the Armmite F4.

The PAUSE command will freeze the execution of the program for a specified number of milliseconds. So, to
create a 12ms wide pulse you could use the following:

SETPIN 4, DOUT
PIN(4) = 1

Page 40 Armmite F4 User Manual Page 40

PAUSE 12
PIN(4) = 0

You can also create a pulse using the PULSE command. This will generate very narrow pulses (e.g., 20µs) or
long pulses up to several days. Long pulses are run in the background and the program will continue
uninterrupted.

Another useful feature is the TIMER function which acts like a stopwatch. You can set it to any value (usually
zero) and it will count upwards every millisecond.

A timing function is also provided by the SETTICK command. This command will generate an interrupt at
regular intervals (specified in milliseconds). Think of it as the regular "tick" of a watch. For example, the
following code fragment will print the current time, and the value of the analogue voltage read on pin PC0,
every second. This process will run independently of the main program which could be doing something
completely unrelated.

SETPIN PC0, AIN
SETTICK 1000, DOINT
DO
 ‘ main processing loop
LOOP

SUB DOINT ‘ tick interrupt
 PRINT TIME$, PIN(PC0)
END SUB

The second line sets up the "tick" interrupt, the first parameter of SETTICK is the period of the interrupt
(1000ms) and the second is the starting label of the interrupt code. Every second (i.e., 1000 ms) the main
processing loop will be interrupted and the program starting at the label DOINT will be executed.

Up to four "tick" interrupts can be setup. These interrupts have the lowest priority.

The accuracy of the Armmite’s battery backed Real Time Clock can vary by a little due to manufacturing
tolerances and temperature. To compensate for this the OPTION RTC CALIBRATE command can be used to
trim the clock to a more accurate value.

Watchdog Timer
One of the possible uses for the Armmite F4 is as an embedded controller. It can be programmed in MMBasic
and when the program is debugged and ready for "prime time" the AUTORUN configuration setting can be
turned on. The chip will then automatically run its program when power is applied and act as a custom
integrated circuit performing some special task. The user need not know anything about what is running inside
the chip.
However, there is the possibility that a fault in the program could cause MMBasic to generate an error and
return to the command prompt. This would be of little use in an embedded situation as the Armmite F4 would
not have anything connected to the console. Another possibility is that the MMBasic program could get itself
stuck in an endless loop for some reason. In both cases the visible effect would be the same… the program
would stop running until the power was cycled.
To guard against this the watchdog timer can be used. This is a timer that counts down to zero and when it
reaches zero the processor will be automatically restarted (the same as when power was first applied), this will
occur even if MMBasic was sitting at the command prompt. Following the restart, the automatic variable
MM.WATCHDOG will be set to true to indicate that the restart was caused by a watchdog timeout.
The WATCHDOG command should be placed in strategic locations in the program to keep resetting the timer
and therefore preventing it from counting down to zero. Then, if a fault occurs, the timer will not be reset, it
will count down to zero and the program will be restarted (assuming the AUTORUN option is set).

PIN Security
Sometimes it is important to keep the data and program in an embedded controller confidential. In the
Armmite F4 this can be done by using the OPTION PIN command. This command will set a pin number

Page 41 Armmite F4 User Manual Page 41

(which is stored in flash) and whenever the Armmite F4 returns to the command prompt (for whatever reason)
the user at the console will be prompted to enter the PIN number. Without the correct PIN the user cannot get
to the command prompt and their only option is to enter the correct PIN or reboot the Armmite. When it is
rebooted the user will still need the correct PIN to access the command prompt.
Because an intruder cannot reach the command prompt they cannot list or copy a program, they cannot change
the program or change any aspect of MMBasic or the Armmite. Once set the PIN can only be removed by
providing the correct PIN as set in the first place. If the number is lost the only method of recovery is to reset
MMBasic as described below (which will erase the program).
There are other time consuming ways of accessing the data (such as using the STM32Cube Programmer to
examine the flash memory) so this should not be regarded as the ultimate security but it does act as a significant
deterrent.

Single, Secure HEX File
If you write a program for the Armmite F4 and set the following options:

OPTION BREAK 0
OPTION AUTORUN ON

you will end up with a program that cannot be stopped or interrupted. To further bullet proof it you could use
the watchdog timer and OPTION PIN.
You can then use STM32CubeProgrammer to read the complete flash memory of the Armmite F4 and export it
as a hex file. This will contain the MMBasic firmware as well as your BASIC program and the above options.
This file can be sent to someone as custom firmware for the STM32F407VET6 development board. They can
load the hex file and it will immediately start running your program. To them it will be indistinguishable from
firmware written in C (other than the startup banner produced by MMBasic). They do not have to load
MMBasic and they do not need know anything about programming for the Armmite F4.

Commands Vs Functions
Your program will be made up of MMBasic commands and functions. A command will tell MMBasic to do
something. The program does not expect it to return a value, it assumes it will be done. e.g. to set the date.
DATE$=”20/05/2021”
Commands are all listed in the Commands section of this manual.

A function will always return a value. The function expects to return a value and the program must have a
variable of the correct type ready to accept it. e.g. to get the date into variable today$
today$=DATE$
Using the PRINT command is an easy way to test a function without explicitly needing to know what it returns.
e.g.
PRINT DATE$
The ? character can be used as shorthand for the PRINT command. e.g.
? DATE$

The functions are all listed in the Functions section of this manual.

Read Only Variables
MMBasic has a number of read only variables which you can use to determine various information about
MMBasic and the hardware it is running on.e.g. what version of MMBasic, LCD type etc. These are all
described in the Predefined Read Only Variables section.

OPTION RESET to set the options to the default values if required.

Setting Options
Many options can be set by using commands that start with the keyword OPTION. They are listed in the
Option Settings section of this manual. For example, you can set the baud rate of the console with the
command:

OPTION BAUDRATE 115200

Page 42 Armmite F4 User Manual Page 42

Saving Options
Options are saved in 80 bytes of battery backed up RTC RAM. The options are not overwritten when new
firmware is loaded, so if you had an LCDPANEL configured and loaded new firmware, then it would still be
configured. Use the command

Resetting MMBasic
MMBasic can be reset to its original configuration using the following method:

 Holding KEY 1 down, while applying power or pressing the RST button. You can connect ground to
PE3 pin if you find it difficult to hold the small button down.

This will result in the program memory and saved variables being completely erased and all options (security
PIN, console baud rate, etc.) will be reset to their initial defaults. This includes setting the console to the USB.

OPTION RESET
Issuing this command will reset all options to their default values.

Page 43 Armmite F4 User Manual Page 43

Quick Start Tutorial

Immediate Mode
Assuming that you have correctly connected a terminal emulator to the Armmite and have the command
prompt (the greater than symbol as shown above, i.e., >) you can enter a command line followed by the enter
key and it will be immediately run.
For example, if you enter the command PRINT 1/7 you should see this:

> PRINT 1/7
0.142857
>

This is called immediate mode and is useful for testing commands and their effects.

A Simple Program
To enter a program, you can use the EDIT command which is fully described later in this manual. However, to
get a quick feel for how it works, try this sequence (your terminal emulator must be VT100 compatible):
 At the command prompt type, EDIT followed by the ENTER key.

 The editor should start up and you can enter this line: PRINT "Hello World"

 Press the F1 key in your terminal emulator (or CTRL-Q which will do the same thing). This tells the
editor to save your program and exit to the command prompt.

 At the command prompt type RUN, followed by the ENTER key.

 You should see the message: Hello World

Congratulations. You have just written and run your first program on the Armmite. If you type EDIT again
you will be back in the editor where you can change or add to your program.

Flashing a LED on the STM32F407VET6 board
The board already has two diodes set up to use. D2 of pin PA6
D3 on pin PA7. Let’s flash D2.
Use the EDIT command to enter the following program:

 The STM32F407VET6 has these LEDs with
appropriate resistors ready to go on the PA6 and PA7
pins.

SETPIN PA6, DOUT
DO
 PIN(PA6) = 1
 PAUSE 500
 PIN(PA6) = 0
 PAUSE 500
LOOP

Page 44 Armmite F4 User Manual Page 44

When you have saved and run this program you should be greeted by the LED flashing on and off. It is not a
great program but it does illustrate how your Armmite F4 can interface to the physical world via your
programming.

The chapter Using the I/O pins later in this manual provides a full description of the I/O pins and how to
control them.

Tutorial on Programming in the BASIC Language

If you are new to the BASIC programming language now would be a good time to read
(Programming in BASIC - A Tutorial) at the rear of Geoff Grahame’s excellent Picomite User Manual.
This is a comprehensive tutorial on the language which will take you through the fundamentals in an easy to
read format with lots of examples.

Setting the AUTORUN Option
You now have the Armmite F4 doing something useful (if you can call flashing a LED useful). Assuming that
this is all that you want the Armmite to do you can then instruct it to always run this program whenever power
is applied.

To do this you first need to regain the command prompt and you can do this by entering CTRL-C at the
console. This will interrupt the running program and return you to the command prompt.

Then enter the command:
OPTION AUTORUN ON

This instructs MMBasic to automatically run your program whenever power is applied. To test this, you can
remove the power and then re-apply it. The Armmite should start up flashing the LED.

If this is all that you want, you can disconnect the console and it will sit there flashing the LED on and off
forever. If ever you wanted to change something (for example the pause between on and off) you can attach
your terminal emulator to the console, interrupt the program with a CTRL-C and edit it as needed.

This is the great benefit of the Armmites and Micromites, it is very easy to write and change a program.

https://geoffg.net/Downloads/picomite/PicoMite_User_Manual.pdf

Page 45 Armmite F4 User Manual Page 45

Full Screen and Commandline Editors
Full Screen Editor
An important productivity feature of the Micromites/Armmites is the full screen editor. This will work with
any VT100 compatible terminal emulator (Tera Term is recommended).

The full screen program editor is invoked with the EDIT command. The cursor will be automatically
positioned at the last place that you were editing at or, if your program had just been stopped by an error, the
cursor will be positioned at the line that caused the error.

If you are used to an editor like Notepad, you will find that the operation of this editor is familiar. The arrow
keys will move your cursor around in the text, home and end will take you to the beginning or end of the line.
Page up and page down will do what their titles suggest. The delete key will delete the character at the cursor
and backspace will delete the character before the cursor. The insert key will toggle between insert and
overtype modes. About the only unusual key combination is that two home key presses will take you to the
start of the program and two end key presses will take you to the end.

At the bottom of the screen the status line will list the various function keys used by the editor and their action.
In more details these are:

ESC This will cause the editor to abandon all changes and return to the command prompt with
the program memory unchanged. If you have changed the text you will be asked if you
really what want to abandon your changes.

F1: SAVE This will save the program to program memory and return to the command prompt.

F2: RUN This will save the program to program memory and immediately run it.

F3: FIND This will prompt for the text that you want to search for. When you press enter the
cursor will be placed at the start of the first entry found.

SHIFT-F3 Once you have used the search function you can repeatedly search for the same text by
pressing SHIFT-F3.

F4: MARK This is described in detail below.

F5: PASTE This will insert (at the current cursor position) the text that had been previously cut or
copied (see below).

Page 46 Armmite F4 User Manual Page 46

If you pressed the mark key (F4) the editor will change to the mark mode. In this mode you can use the arrow
keys to mark a section of text which will be highlighted in reverse video. You can then delete, cut or copy the
marked text. In this mode the status line will change to show the functions of the function keys in the mark
mode. These keys are:

ESC Will exit mark mode without changing anything.

F4: CUT Will copy the marked text to the clipboard and remove it from the program.

F5: COPY Will just copy the marked text to the clipboard.

DELETE Will delete the marked text leaving the clipboard unchanged.

You can also use control keys instead of the function keys listed above. These control keystrokes are:

LEFT Ctrl-S RIGHT Ctrl-D UP Ctrl-E DOWN Ctrl-X
HOME Ctrl-U END Ctrl-K PageUp Ctrl-P PageDn Ctrl-L
DEL Ctrl-] INSERT Ctrl-N F1 Ctrl-Q F2 Ctrl-W
F3 Ctrl-R ShiftF3 Ctrl-G F4 Ctrl-T F5 Ctrl-Y
If you are using Tera Term, Putty, MMEdit or GFXterm as the terminal emulator it is also possible to position
the cursor by left clicking the PC's mouse in the terminal emulator's window.

The best way to learn the full screen editor is to simply fire it up and experiment.

The editor is a very productive method of writing a program. With the command EDIT you can write your
program on the Armmite. Then, by pressing the F2 key, you can save and run the program. If your program
stops with an error, you can press the function key F4 which will run the command EDIT and place you back in
the editor with the cursor positioned at the line that caused the error. This edit/run/edit cycle is very fast.

Using the OPTION BAUDRATE command the baud rate of the console can be changed to any speed up to
230400 bps. Changing the console baud rate to a higher speed makes the full screen editor much faster in
redrawing the screen. If you have a reliable connection to the Armmite it is worth changing the speed to at
least 115200. 115200 is the default speed on the Serial Console for the Armmite F4.
The editor expects that the terminal emulator is set to 24 lines per screen with each line 80 characters wide.
Both of these assumptions can be changed with the OPTION DISPLAY command to suit non standard
displays.

Note that a terminal emulator can lose its position in the text with multiple fast keystrokes (like the up and
down arrows). If this happens you can press the HOME key twice which will force the editor to jump to the
start of the program and redraw the display.

Long Lines in the Editor
MMBasic lines can be up to 255 characters. The editor will only show the number of characters that will fit into
the available columns in the display.e.g. 80. This is a limitation of all of the simple MMBasic versions. Only
the CMM2 and MMB4W get round this by having much more memory to allow sideways scrolling in a
completely re-written editor.

For long lines the easiest way is to import the program from a PC (autosave or XModem).

There is a hack workround in the editor for inserting or editing lines longer than 80 columns. To enter a long
line type the line over two rows by hitting return at an appropriate point and continue typing on the next line,
then delete the inserted return in the first line to combine the lines.You can't see the characters for the rest of the
line, but they're there.

To edit a long line, place a return in the line as displayed, the line will be broken at that point, the hidden
characters will appear on the next line. Edit as required and the delete the inserted return to combine the lines.

Colour Coded Editor Display
The editor has the ability to colour code the edited program with keywords, numbers and comments displayed
in different colours. By default, the output is colour coded on the Armmite F4 but this feature can be
disabled/enabled with the commands:
OPTION COLOURCODE OFF

OPTION COLOURCODE ON

Page 47 Armmite F4 User Manual Page 47

This setting is saved in flash memory and is automatically applied on startup.

Note:
 This feature requires a terminal emulator that can interpret the appropriate escape codes and respond

correctly. It works correctly with Tera Term however, Putty needs its default background colour to be
changed to white (Settings >> Colours >> Default Background >> Modify).

 Colour coding the editor’s output requires many extra characters to be sent to the terminal emulator and
this can slow down the screen update at lower baud rates. If colour coding is used it is recommended that
the baud rate be set to a higher speed (115200) as discussed above.

Command Line Buffer and Editor
The ArmmiteF4 implements a command buffer at the command prompt. The Up and Down arrows can be used
to locate previous commands in the buffer. A 1024 byte buffer is used to store as many previous commands as
will fit. A command is added to the buffer whenever it is sent. i.e. enter key pressed.
Commands being entered or recalled from the buffer can be edited. The following are supported.
The command line can be up the 255 characters. This will wrap to the next line as required on the VT100
terminal and also the LCDPANEL if OPTION LCDPANEL CONSOLE is used.

Key Action
Enter Adds command to buffer and sends to console
BackSpace Destructive backspace. Moves 1 character left and clears the character, pulls any

characters to the right across 1 character. Turns on edit mode so Up and Down arrows
are disabled.

Left Arrow Moves cursor one character left. INS (Insert Mode) is turned on so any character type
will be inserted at the the cursor position. Turns on edit mode so Up and Down arrows
are disabled. An additional Left Arrow issue at the home position will turn on OVR
(overwrite) mode.

Right Arrow Moves cursor one character right. OVR (Overwrite Mode) is turned on so any
character type will overwrite the character at the the cursor position. Turns on edit
mode so Up and Down arrows are disabled.

DEL Will delete the character under the cursor and pulls any characters to the right across 1
character. Turns on edit mode so Up and Down arrows are disabled.

INS Toggles between Insert Mode and Overwrite Mode.
INS (Insert Mode). Any character type will be inserted at the cursor position.
OVR (Overwrite Mode). Any character type will overwrite character at the cursor
position.

HOME
HOME+HOME

Returns cursor to first character position. Turns on edit mode so Up and Down arrows
are disabled. HOME pressed while at the home position will turns off edit mode so Up
and Down arrows are enabled. i.e. HOME+HOME abandons the current edit and
allows a new command to be selected from the buffer with the Up Arrow and a new
blank command field with the Down Arrow.

END Moves cursor to last position. Turns on edit mode so Up and Down arrows are
disabled.

F2 Sends RUN command to console
F3 Sends LIST command to console
F4 Sends EDIT command to console
F5 Sends ESC sequents to VT100 to clear the screen. Also clears the LCDPANEL if

OPTION LCDPANEL CONSOLE is set.
F10 Sends AUTOSAVE (Use CNTRL+C to abort if pressed by accident)
F11 Sends XMODEM RECEIVE
F12 Sends XMODEM SEND
Up Arrow Recalls command from buffer in to edit buffer.
Down Arrow Recalls command from buffer into the edit buffer.

Page 48 Armmite F4 User Manual Page 48

On the LCDPANEL a different cursor is displayed to show INS or OVR mode. On VT100 the cursor is not
changed and there is no indication of the mode.

The VT100 emulations provided by TeraTerm, Putty and GFXTerm have been tested to support command lines
that extend beyond one line on the terminal. i.e. wrap to next line as required until up to 255 characters are
used. If your terminal does not support this you should limit your commands to one terminal width. e.g. 80
characters.
Setting the terminal size with OPTION DISPLAY lines[,chars] will also send an ESC sequence to set the
VT100 terminal to the matching size. Only TerraTerm is known to respond to this sequence.

Page 49 Armmite F4 User Manual Page 49

Variables, Expressions and Operators
Naming Conventions
In MMBasic command names, function names, labels, variable names, file names, etc. are not case sensitive, so
that "Run" and "RUN" are equivalent and "dOO" and "Doo" refer to the same variable.

Variables
Variables can start with an alphabetic character or underscore and can contain any alphabetic or numeric
character, the period (.) and the underscore (_). They may be up to 32 characters long.
A variable name or a label must not be the same as a function or one of the following keywords: THEN, ELSE,
GOTO, GOSUB, TO, STEP, FOR, WHILE, UNTIL, LOAD, MOD, NOT, AND, OR, XOR, AS.
E.g., step = 5 is illegal as STEP is a keyword.
MMBasic supports three different types of variables:

1. Double Precision Floating Point.
These can store a number with a decimal point and fraction (e.g., 45.386) however they will lose accuracy
when more than 14 digits of precision are used. Floating point variables are specified by adding the
suffix '!' to a variable's name (e.g., i!, nbr!, etc). They are also the default when a variable is created
without a suffix (e.g. i, nbr, etc.).

2. 64-bit Signed Integer.
These can store positive or negative numbers with up to 19 decimal digits without losing accuracy but
they cannot store fractions (i.e., the part following the decimal point). These are specified by adding the
suffix '%' to a variable's name. For example, i%, nbr%, etc.

3. A String.
A string will store a sequence of characters (e.g., "Tom"). Each character in the string is stored as an
eight bit number and can therefore have a decimal value of 0 to 255. String variable names are
terminated with a '$' symbol (e.g., name$, s$, etc.). Strings can be up to 255 characters long.

Note that it is illegal to use the same variable name with different types. E.g., using nbr! and nbr% in the
same program would cause an error. This is different from the original Colour Maximite which allowed this.
Most programs use floating point variables as these can deal with the numbers used in typical situations and are
more intuitive when dealing with division and fractions. So, if you are not bothered with the details, always use
floating point.

Constants
Numeric constants may begin with a numeric digit (0-9) for a decimal constant, &H for a hexadecimal
constant, &O for an octal constant or &B for a binary constant. For example, &B1000 is the same as the
decimal constant 8. Constants that start with &H, &O or &B are always treated as 64-bit unsigned integer
constants.
Decimal constants may be preceded with a minus (-) or plus (+) and may be terminated with 'E' followed by an
exponent number to denote exponential notation. For example, 1.6E+4 is the same as 16000.
When a constant number is used it will be assumed that it is an integer if a decimal point or exponent is not
used. For example, 1234 will be interpreted as an integer while 1234.0 will be interpreted as a floating point
number.
String constants are surrounded by double quote marks ("). E.g., "Hello World".

OPTION DEFAULT
A variable can be used without a suffix (i.e., !, % or $) and in that case MMBasic will use the default type of
floating point. For example, the following will create a floating point variable:

Nbr = 1234

However, the default can be changed with the OPTION DEFAULT command. For example, OPTION
DEFAULT INTEGER will specify that all variables without a specific type will be integer. So, the following
will create an integer variable:

OPTION DEFAULT INTEGER
Nbr = 1234

Page 50 Armmite F4 User Manual Page 50

The default can be set to FLOAT (which is the default when a program is run), INTEGER, STRING or NONE.
In the latter all variables must be specifically typed otherwise an error will occur.
The OPTION DEFAULT command can be placed anywhere in the program and changed at any time but good
practice dictates that if it is used it should be placed at the start of the program and left unchanged.

OPTION EXPLICIT
By default, MMBasic will automatically create a variable when it is first referenced. So, Nbr = 1234 will
create the variable and set it to the number 1234 at the same time. This is convenient for short and quick
programs but it can lead to subtle and difficult to find bugs in large programs. For example, in the third line of
this fragment the variable Nbr has been misspelt as Nbrs. As a consequence, the variable Nbrs would be
created with a value of zero and the value of Total would be wrong.

Nbr = 1234
Incr = 2
Total = Nbrs + Incr

The OPTION EXPLICIT command tells MMBasic to not automatically create variables. Instead they must be
explicitly defined using the DIM, LOCAL or STATIC commands (see below) before they are used. The use of
this command is recommended to support good programming practice. If it is used it should be placed at the
start of the program before any variables are used.

DIM and LOCAL
The DIM and LOCAL commands can be used to define a variable and set its type and are mandatory when the
OPTION EXPLICIT command is used.
The DIM command will create a global variable that can be seen and used throughout the program including
inside subroutines and functions. However, if you require the definition to be visible only within a subroutine
or function, you should use the LOCAL command at the start of the subroutine or function. LOCAL has
exactly the same syntax as DIM.
If LOCAL is used to specify a variable with the same name as a global variable, then the global variable will be
hidden to the subroutine or function and any references to the variable will only refer to the variable defined by
the LOCAL command. Any variable created by LOCAL will vanish when the program leaves the subroutine.
At its simplest level DIM and LOCAL can be used to define one or more variables based on their type suffix or
the OPTION DEFAULT in force at the time. For example:

DIM nbr%, s$

But it can also be used to define one or more variables with a specific type when the type suffix is not used:
DIM INTEGER nbr, nbr2, nbr3, etc

In this case nbr, nbr2, nbr3, etc. are all created as integers. When you use the variable within a program you do
not need to specify the type suffix. For example, MyStr in the following works perfectly as a string variable:

DIM STRING MyStr
MyStr = "Hello"

The DIM and LOCAL commands will also accept the Microsoft practice of specifying the variable's type after
the variable with the keyword "AS". For example:

DIM nbr AS INTEGER, s AS STRING

In this case the type of each variable is set individually (not as a group as when the type is placed before the list
of variables).

The variables can also be initialised while being defined. For example:
DIM INTEGER a = 5, b = 4, c = 3
DIM s$ = "World", i% = &H8FF8F
DIM msg AS STRING = "Hello" + " " + s$

The value used to initialise the variable can be an expression including user defined functions.
The DIM or LOCAL commands are also used to define an array and all the rules listed above apply when
defining an array. For example, you can use:

DIM INTEGER nbr(10), nbr2, nbr3(5,8)

Page 51 Armmite F4 User Manual Page 51

When initialising an array, the values are listed as comma separated values with the whole list surrounded by
brackets. For example:

DIM INTEGER nbr(5) = (11, 12, 13, 14, 15, 16)
or

DIM days(7) AS STRING = ("","Sun","Mon","Tue","Wed","Thu","Fri","Sat")

STATIC
Inside a subroutine or function, it is sometimes useful to create a variable which is only visible within the
subroutine or function (like a LOCAL variable) but retains its value between calls to the subroutine or function.
You can do this by using the STATIC command. STATIC can only be used inside a subroutine or function and
uses the same syntax as LOCAL and DIM. The difference is that its value will be retained between calls to the
subroutine or function (i.e., it will not be initialised on the second and subsequent calls).
For example, if you had the following subroutine and repeatedly called it, the first call would print 5, the
second 6, the third 7 and so on.

SUB Foo
 STATIC var = 5
 PRINT var
 var = var + 1
END SUB

Note that the initialisation of the static variable to 5 (as in the above example) will only take effect on the first
call to the subroutine. On subsequent calls the initialisation will be ignored as the variable had already been
created on the first call.
As with DIM and LOCAL the variables created with STATIC can be float, integers or strings and arrays of
these with or without initialisation.

CONST
Often it is useful to define an identifier that represents a value without the risk of the value being accidently
changed - which can happen if variables were used for this purpose (this practice encourages another class of
difficult to find bugs).
Using the CONST command you can create an identifier that acts like a variable but is set to a value that cannot
be changed. For example:

CONST InputVoltagePin = 26
CONST MaxValue = 2.4

The identifiers can then be used in a program where they make more sense to the casual reader than simple
numbers. For example:

IF PIN(InputVoltagePin) > MaxValue THEN SoundAlarm

A number of constants can be created on the one line:
CONST InputVoltagePin = 26, MaxValue = 2.4, MinValue = 1.5

The value used to initialise the constant is evaluated when the constant is created and can be an expression
including user defined functions.

The type of the constant is derived from the value assigned to it; so for example, MaxValue above will be a
floating point constant because 2.4 is a floating point number. The type of a constant can also be explicitly set
by using a type suffix (i.e., !, % or $) but it must agree with its assigned value.

Special Characters in Strings
Special, non-printable characters can be inserted in string constants using the backslash (ie, \) as an escape
symbol. To enable this facility the command OPTION ESCAPE must be placed at the start of the program.
This can be used when setting the value of a string or in DATA statements containing quoted strings. For
backward compatability the use of \ as an escape character must be enabled by entering OPTION ESCAPE at
the beginning of the program. OPTION ESCAPE can be entered at the command line for use on the command
line, but will be reset when the RUN command is called. The use in a program requires the OPTION ESCAPE
set within the program.
MMBasic is agnostic to the use of a forward slash (/) or back slash (\) as a directory separator for file
operations. Internally these are all converted to a forward slash. (/). However, if using the escape option any
filename that is first entered into a string variable that is then used in a file operation should use a forward

Page 52 Armmite F4 User Manual Page 52

slash, as the string variable would treat any backslash as an escape character before it is passed to the file
operation. Either a / or \ is acceptable if entering a literal filename directly into the file operation.
The MMEdit variable report (ProgramDisplay Variable Report) can be used to identify lines where the
escape character is used when verifying if an exsisting program can safely use OPTION ESCAPE.

Escape Hex value ASCII Character represented
Sequence Vaule
\a 07 Alert (Beep, Bell)
\b 08 Backspace
\e 1B Escape character
\f 0C Formfeed Page Break
\n 0A Newline (Line Feed); see notes below
\r 0D Carriage Return
\q 22 Quote symbol
\t 09 Horizontal Tab
\v 0B Vertical Tab
\\ 5C Backslash
\nnn any The byte whose numerical value is given by nnn interpreted as a decimal number
\&hh any The byte whose numerical value is given by hh interpreted as a hexadecimal number

For example, the following will print the words Hello and World on separate lines:

OPTION ESCAPE
PRINT “Hello\r\nWorld ”

Expressions and Operators
MMBasic will evaluate a mathematical expression using the standard mathematical rules. For example,
multiplication and division are performed first followed by addition and subtraction. These are called the rules
of precedence and are detailed below.
This means that 2 + 3 * 6 will resolve to 20, so will 5 * 4 and also 10 + 4 * 3 – 2.
If you want to force the interpreter to evaluate parts of the expression first you can surround that part of the
expression with brackets. For example, (10 + 4) * (3 – 2) will resolve to 14 not 20 as would have been the case
if the brackets were not used. Using brackets does not appreciably slow down the program so you should use
them liberally if there is a chance that MMBasic will misinterpret your intention.
The following operators, in order of precedence, are implemented in MMBasic. Operators that are on the same
level (for example + and -) are processed with a left to right precedence as they occur on the program line.

Arithmetic operators:

^ Exponentiation (e.g., b^n means bn)
* / \ MOD Multiplication, division, integer division and modulus (remainder)
+ - Addition and subtraction

Shift operators:

x << y x >> y These operate in a special way. << means that the value returned
will be the value of x shifted by y bits to the left while >> means the
same only right shifted. They are integer functions and any bits
shifted off are discarded. For a right shift any bits introduced are set
to the value of the top bit (bit 63). For a left shift any bits introduced
are set to zero.

Page 53 Armmite F4 User Manual Page 53

Logical operators:
NOT INV invert the logical value on the right (eg, NOT a=b is a<>b)

or bitwise inversion of the value on the right (e.g., a = INV b)
<> < > <= =<
>= =>

Inequality, less than, greater than, less than or equal to, less than or
equal to (alternative version), greater than or equal to, greater than or
equal to (alternative version)

= equality
AND OR XOR Conjunction, disjunction, exclusive or

For Microsoft compatibility the operators AND, OR and XOR are integer bitwise operators. For example,
PRINT (3 AND 6) will output the number 2. Because these operators can act as both logical operators (for
example, IF a=5 AND b=8 THEN …) and as bitwise operators (e.g. y% = x% AND &B1010) the interpreter
will be confused if they are mixed in the same expression. So, always evaluate logical and bitwise expressions
in separate expressions.

The other logical operations result in the integer 0 (zero) for false and 1 for true. For example the statement
PRINT 4 >= 5 will print the number zero on the output and the expression A = 3 > 2 will store +1 in A.
The NOT operator will invert the logical value on its right (it is not a bitwise invert) while the INV operator
will perform a bitwise invert. Both of these have the highest precedence so they will bind tightly to the next
value. For normal use of NOT or INV the expression to be operated on should be placed in brackets. Eg:
IF NOT (A = 3 OR A = 8) THEN …

String operators:
+ Join two strings
<> < > <= =<
>= =>

Inequality, less than, greater than, less than or equal to, less than or
equal to (alternative version), greater than or equal to, greater than or
equal to (alternative version)

= Equality
String comparisons respect case. For example, "A" is greater than "a".

Mixing Floating Point and Integers
MMBasic automatically handles conversion of numbers between floating point and integers. If an operation
mixes both floating point and integers (e.g., PRINT A% + B!) the integer will be converted to a floating
point number first, then the operation performed and a floating point number returned. If both sides of the
operator are integers, then an integer operation will be performed and an integer returned.
The one exception is the normal division ("/") which will always convert both sides of the expression to a
floating point number and then return a floating point number. For integer division you should use the integer
division operator "\".
Functions will return a float or integer depending on their characteristics. For example, PIN() will return an
integer when the pin is configured as a digital input but a float when configured as an analog input.
If necessary, you can convert a float to an integer with the INT() function. It is not necessary to specifically
convert an integer to a float but if it was needed the integer value could be assigned to a floating point variable
and it will be automatically converted in the assignment.

64-bit Unsigned Integers
MMBasic on the Armmite F4 supports 64-bit signed integers. This means that there are 63 bits for holding the
number and one bit (the most significant bit) which is used to indicate the sign (positive or negative).
However, it is possible to use full 64-bit unsigned numbers as long as you do not do any arithmetic on the
numbers.

64-bit unsigned numbers can be created using the &H, &O or &B prefixes to a number and these numbers can
be stored in an integer variable. You then have a limited range of operations that you can perform on these.
They are << (shift left), >> (shift right), AND (bitwise and), OR (bitwise or), XOR (bitwise exclusive or), INV
(bitwise inversion), = (equal to) and <> (not equal to). Arithmetic operators such as +, -, etc. may be confused
by a 64-bit unsigned number and could return nonsense results.

Page 54 Armmite F4 User Manual Page 54

Note that shift right is a signed operation. This means that if the top bit is a one (a negative signed number) and
you shift right then it will shift in ones to maintain the sign.

To display 64-bit unsigned numbers you should use the HEX$(), OCT$() or BIN$() functions.

For example, the following 64-bit unsigned operation will return the expected results:
X% = &HFFFF0000FFFF0044
Y% = &H800FFFFFFFFFFFFF
X% = X% AND Y%
PRINT HEX$(X%, 16)

Will display "800F0000FFFF0044"

Page 55 Armmite F4 User Manual Page 55

Subroutines and Functions
A program defined subroutine or function is simply a block of programming code that is contained within a
module and can be called from anywhere within your program. It is the same as if you have added your own
command or function to the language.

Subroutines
A subroutine acts like a command and it can have arguments (sometimes called a parameter list). In the
definition of the subroutine they look like this:

SUB MYSUB arg1, arg2$, arg3
 <statements>
 <statements>
END SUB

And when you call the subroutine you can assign values to the arguments. For example:
MYSUB 23, "Cat", 55

Inside the subroutine arg1 will have the value 23, arg2$ the value of "Cat", and so on. The arguments act
like ordinary variables but they exist only within the subroutine and will vanish when the subroutine ends. You
can have variables with the same name in the main program and they will be hidden by the arguments defined
for the subroutine.

When calling a subroutine, you can supply less than the required number of values and in that case the missing
values will be assumed to be either zero or an empty string. You can also leave out a value in the middle of the
list and the same will happen. For example:

MYSUB 23,, 55

Will result in arg2$ being set to the empty string "".

Rather than using the type suffix (e.g., the $ in arg2$) you can use the suffix AS <type> in the definition of the
subroutine argument and then the argument will be known as the specified type, even when the suffix is not
used. For example:

SUB MYSUB arg1, arg2 AS STRING, arg3
 IF arg2 = "Cat" THEN …
END SUB

Local Variables
Inside a subroutine you can define a variable using LOCAL (which has the same syntax as DIM). This variable
will only exist within the subroutine and will vanish when the subroutine exits. You can have a variable in
your main program with the same name but it will be hidden and the local variable used while the subroutine is
executed.

If you do not declare the variable as LOCAL within the subroutine and OPTION EXPLICIT is not in force it
will be created as a global variable and be visible in your main program and subroutines, just like a normal
variable declared outside a subroutine or function.

Functions
Functions are similar to subroutines with the main difference being that the function is used to return a value in
an expression. The rules for the argument list in a function are similar to subroutines. The only difference is
that brackets are required around the argument list when you are calling a function, even if there are no
arguments (they are optional when calling a subroutine).
To return a value from the function you assign a value to the function's name within the function. If the
function's name is terminated with a $, a % or a ! the function will return that type, otherwise it will return
whatever the OPTION DEFAULT is set to. You can also specify the type of the function by adding AS <type>
to the end of the function definition.
For example:

FUNCTION Fahrenheit(C) AS FLOAT
 Fahrenheit = C * 1.8 + 32
END FUNCTION

Page 56 Armmite F4 User Manual Page 56

Passing Arguments by Reference
If you use an ordinary variable (i.e., not an expression) as the value when calling a subroutine or a function, the
argument within the subroutine/function will point back to the variable used in the call and any changes to the
argument will also be made to the supplied variable. This is called passing arguments by reference.
For example, you might define a subroutine to swap two values, as follows:

SUB Swap a, b
 LOCAL t
 t = a
 a = b
 b = t
END SUB

In your calling program you would use variables for both arguments:
Swap nbr1, nbr2

And the result will be that the values of nbr1 and nbr2 will be swapped.
For this to work the type of the variable passed (eg, nbr1) and the defined argument (eg, a) must be the same
(in the above example both default to float).

Unless you need to return a value via the argument you should not use an argument as a general purpose
variable inside a subroutine or function. This is because another user of your routine may unwittingly use a
variable in their call and that variable will be "magically" changed by your routine. It is much safer to assign
the argument to a local variable and manipulate that instead.

Passing Arguments by Value
Where you need to ensure that the argument being passed is not altered in any way, you can pass a value to a
subroutine. When the parameter being passed is an expression, the result of that expression is passed as a value.
The expression could be the result of simple maths or the return value of a function. It can also be as simple as
enclosing a variable in brackets, causing the interpreter to treat it as an expression.
In this case the value could be used or even changed in the sub routine without having any effect on the passed
value. The same could be achieved by assigning a passed by reference variable and assigning it to a local
variable in the subroutine and using/changing the local variable as desired.
The advantage of passing by value is that the argument passed in the calling statement is safe from any changes
in the called routine and additionally, saves you having to use LOCAL in the sub routine.
 a=4
 b=4
 c=4
 testsub((a),b,c)
 print a,b,c
 sub testsub(arg1,arg2,arg3)
 local k
 arg1=arg1+1
 arg2=arg2+1
 k=arg3
 k=k+1
 end sub

Results in 4 5 4
The result for both a and c is not changed globally; a being passed by value and c being copied to a LOCAL
variable

Page 57 Armmite F4 User Manual Page 57

Passing Arrays
Single elements of an array can be passed to a subroutine or function and they will be treated the same as a
normal variable. For example, this is a valid way of calling the Swap subroutine (discussed above):

Swap dat(i), dat(i + 1)
This type of construct is often used in sorting arrays.

You can also pass one or more complete arrays to a subroutine or function by specifying the array with empty
brackets instead of the normal dimensions. For example, a(). In the subroutine or function definition the
associated parameter must also be specified with empty brackets. The type (i.e., float, integer or string) of the
argument supplied and the parameter in the definition must be the same.
In the subroutine or function the array will inherit the dimensions of the array passed and these must be
respected when indexing into the array. If required, the dimensions of the array could be passed as additional
arguments to the subroutine or function so it could correctly manipulate the array. The array is passed by
reference which means that any changes made to the array within the subroutine or function will also apply to
the supplied array.
For example, when the following is run the words "Hello World" will be printed out:

DIM MyStr$(5, 5)
MyStr$(4, 4) = "Hello" : MyStr$(4, 5) = "World"
Concat MyStr$()
PRINT MyStr$(0, 0)

SUB Concat arg$()
 arg$(0,0) = arg$(4, 4) + " " + arg$(4, 5)
END SUB

Early Exit
There can be only one END SUB or END FUNCTION for each definition of a subroutine or function. To exit
early from a subroutine (i.e., before the END SUB command has been reached) you can use the EXIT SUB
command. This has the same effect as if the program reached the END SUB statement. Similarly, you can use
EXIT FUNCTION to exit early from a function.

Recursion
Recursion is where a subroutine or function calls itself. You can do recursion in MMBasic but there are a
number of issues (these are a direct consequence of the limited memory on microcontrollers):

 There is a fixed limit to the depth of recursion. Armmite F4 this is 50 levels.
 If you have many arguments to the subroutine or function and many LOCAL variables (especially

 strings) you could easily run out of memory before reaching the 50 level limit.
 Any FOR…NEXT loops and DO…LOOPs will be corrupted if the subroutine or function is recursively

 called from within these loops.

Page 58 Armmite F4 User Manual Page 58

Example of a Defined Function
There is often the need for a special command or function to be implemented in MMBasic but in many cases
these can be constructed using an ordinary subroutine or function which will then act exactly the same as a built
in command or function.

For example, sometimes there is a requirement for a TRIM function which will trim specified characters from
the start and end of a string. The following provides an example of how to construct such a simple function in
MMBasic.

The first argument to the function is the string to be trimmed and the second is a string containing the
characters to trim from the first string. RTrim$() will trim the specified characters from the end of the string,
LTrim$() from the beginning and Trim$() from both ends.

' trim any characters in c$ from the start and end of s$
Function Trim$(s$, c$)
 Trim$ = RTrim$(LTrim$(s$, c$), c$)
End Function

' trim any characters in c$ from the end of s$
Function RTrim$(s$, c$)
 RTrim$ = s$
 Do While Instr(c$, Right$(RTrim$, 1))
 RTrim$ = Mid$(RTrim$, 1, Len(RTrim$) - 1)
 Loop
End Function

' trim any characters in c$ from the start of s$
Function LTrim$(s$, c$)
 LTrim$ = s$
 Do While Instr(c$, Left$(LTrim$, 1))
 LTrim$ = Mid$(LTrim$, 2)
 Loop
End Function

As an example of using these functions:
S$ = " ****23.56700 "
PRINT Trim$(s$, " ")

Will give "****23.56700"
PRINT Trim$(s$, " *0")

Will give "23.567"
PRINT LTrim$(s$, " *0")

Will give "23.56700"

Page 59 Armmite F4 User Manual Page 59

Program Initialisation, CFunctions and the Library
There are a number of features of the Armmites and Micromites that enable the advanced user to add features
to MMBasic and perform special operations at startup. Most programs will not need to use these features but
they are handy for the advanced user who needs more control over the Armmite F4.

Embedded C Routines - CSubs and CFunctions
It is possible to add program modules that are written in the C language to MMBasic. They are called CSubs or
Cfunctions and to the BASIC program they look the same as the MMBasic built in functions and subroutines.
Generally, these modules can run much faster than a BASIC program and can more easily access the special
hardware features of the microcontroller. A CSub does not return a value, but can update the parameters passed
to it to to return a result to MMbasic. The Armmite F4 also implements the CFunction contruction which does
return a value like other functions.

The example below shows a CSub that reverses the order of a string. The CSub is loaded as part of your basic
code bounded by the CSUB and END CSUB commands.

This CSub is then called from MMBasic as below.

Dim instring$="1234567890"
Dim outstring$
strrev instring$, outstring$
Print outstring$
End

CSub strrev
00000000
b085b480 6078af00 687b6039 60bb781b b2da68bb 701a683b 60fb2301 683ae00d
441368fb 68fa68b9 32011a8a 440a6879 701a7812 330168fb 68bb60fb 68fb1c5a
d8ec429a 461a68bb 0300f04f 46194610 46bd3714 7b04f85d bf004770
End CSub

The Library
The LIBRARY feature makes it possible to create BASIC functions, subroutines ,embedded fonts CSubs and
CFunctions and add them to MMBasic to make them permanent and part of the language. For example, you
might have written a series of subroutines and functions that perform sophisticated bit manipulation; these
could be stored as a library and become part of MMBasic and perform the same as other built in functions that
are already part of the language. An embedded font can also be added the same way and used just like a
normal font.
To install components into the library you need to write and test the routines as you would with any normal
BASIC routines. When you are satisfied that they are working correctly you can use the LIBRARY SAVE
command. This will transfer the routines (as many as you like) to a non visible part of flash memory where
they will be available to any BASIC program but will not show when the LIST command is used and will not
be deleted when a new program is loaded or NEW is used. However, the saved subroutines and functions can
be called from within the main program and can even be run at the command prompt (just like a built in
command or function).
Some points to note:
 Library routines act exactly like normal BASIC code and can consist of any number of subroutines,

functions, embedded C routines and fonts. The only difference is that they do not show when a program
is listed and are not deleted when a new program is loaded.

 Library routines can create and access global variables and are subject to the same rules as the main
program – for example, respecting OPTION EXPLICIT if it is set.

 When the routines are transferred to the library MMBasic will compress them by removing comments,
extra spaces, blank lines and the hex codes in embedded C routines and fonts. This makes the library
space efficient, especially when loading large fonts. Following the save the program area is cleared.

Page 60 Armmite F4 User Manual Page 60

 During development of a large program you may want to put already proven code into the library so that
reloading of the code you are working on from MMEdit or another external editor is smaller and thus
quicker.

 You can use the LIBRARY SAVE command multiple times. With each save the new contents of the
program space are appended to the already existing code in the library.

 You can use line numbers in the library but you cannot use a line number on an otherwise empty line as
the target for a GOTO, etc. This is because the LIBRARY SAVE command will remove any blank lines.

 You can use READ commands in the library. If you want to read from DATA statements in the library
you should use the RESTORE command before the first READ command. This will reset the pointer to
the library space.

To delete the routines in the library space you use the LIBRARY DELETE command. This will clear the space
and return the flash memory used by the library back to the general pool used by normal programs. The only
other way to delete a library is to reset MMBasic to its original configuration as described in the chapter
Resetting MMBasic earlier in this manual.
As an example you could save the following into the library:

CFunction CPUSpeed
00000000 3c02bf81 8c45f000 8c43f000 3c02003d 24420900 7ca51400 70a23002
3c040393 34848700 7c6316c0 00c41021 00621007 3c03029f 24636300 10430005
00402021 00002821 00801021 03e00008 00a01821 3c0402dc 34846c00 00002821
00801021 03e00008 00a01821

End CFunction

This would have the effect of adding a new function (called CPUSpeed) to MMBasic. You could even run it at
the command prompt:

> PRINT CPUSpeed()
 40000000

You can see what is in the library by using the LIBRARY LIST command which will list the contents of the
library space. The MEMORY command can be used to display the amount of flash memory used by the library.

Library Implementation Details (Armmite F4)

The implementation of the library requires that library code is placed at the end of the normal program
memory. The Armmite F4 has 128K of program memory. A requirement to manage this is that all the
MMBasic program code and the library code needs to fit in the available ram of the Armmite F4 during any
update, while the flash is erased and the program memory is updated. The Armmite F4 has about 114K of ram
available once MMBasic takes about 14K for its varaibles. The editor code will also need some memory, so it
would not be possible to make use of the whole 128K of program memory. Using the Winbond flash as a
temporary storage for the library code during an update it a way around this.
The WindBond is 2M and 68K is now be used by MMBasic to implement the library functionality and a backup
for the 4K of Ram used for saved varaibles. 64K is used as a scratch pad for the library code and 4K as a
backup for the 4K of saved vars.
A LIBRARY SAVE will initially save any existing library code and any new code for the library to the Windbond
flash, erase the 128K flash of the program memory and then copy the library code back to the end of the 128K
program flash. When a NEW, EDIT, XMODEM or AUTOSAVE loads or changes MMBasic program code it is
loaded into ram, less any existing library code, the 128K flash of the program memory erased and the
MMBasic code copied from ram to the program memory flash. The library code is then copied directly from
the Windbond flash to the end of the program flash, without ever having to be in ram the same time as the
normal program code.

Page 61 Armmite F4 User Manual Page 61

 The Windbond flash usage layout is:
 =================== << Page 8191 end of Flash
 | 64K | 64K Block can be erased i.e. 256 pages
 | library |
 | temp storage | <- library can be up to 64K
 | | << WBLibAddr (is Page 7936 Start of 64K of Library temp storage)
 =================== << Page 7935 End of VAR FSAVE area
 | VAR FSAVE | Minimum 4K sector can be erased i.e. 16 pages
 | 4K Backup | << WBVarAddr (is Page 7920 Start of 4K used for VAR FSAVE backup of VAR ram)
 =================== << Page 7919 End of user area
 | User | 28 K needs to be erased in 7 * 4K sectors of 16pages
 | Available |
 ~~~~~~~~~~~~~~~~~~~ 
 |    User                          | 
 |   Available                   |   Available to User. Must not use full Erase. 
 |                                      |   erase  Block2 is 64K  256 pages 
 ~                                     ~   erase  Block is 32K   128 pages 
 ~                                     ~   erase Sector is 4K    16 pages 
 ~                                     ~ 
 |                                     | 
 |                                     | 
 ===================   << Page0    Start of User Area 
  
The LIBRARY commands, LIBRARY SAVE, LIBRARY DELETE and LIBRARY LIST [ALL] are implemented with the 
same functionality as the Micromites and Picomites. 
LIBRARY CHECK   is an additional command for F4 only. It checks if library code exists and if it does sets 
Option.ProgFlashSize to point to the start of the library code.  This allows recovery of library if the Options 
have been lost by either an OPTION RESET or because of a missing or flat backup battery. (Options are stored 
in battery backed RAM in the Armmite F4 and are lost if the backup battery fails while the main power is 
removed.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Page 62             Armmite F4 User Manual Page 62 

Program Initialisation  
The library can also include code that is not contained within a subroutine or function.  This code (if it exists) 
will be run automatically before a program starts running (ie, via the RUN command).  This feature can be used 
to initialise constants or setup MMBasic in some way.  For example, if you wanted to set some constants you 
could include the following lines in the library code: 

CONST TRUE = 1 
CONST FALSE = 0 

For all intents and purposes the identifiers TRUE and FALSE have been added to the language and will be 
available to any program that is run on the Micromite/Armmite. 

MM.STARTUP  
There may be a need to execute some code on initial power up, regardless of the program in main memory.  
Perhaps to initialise some hardware, set some options or print a custom startup banner.  This can be 
accomplished by creating a subroutine with the name MM.STARTUP and ensuring it is included in the main 
program or the library.  When the Armmite F4 is first powered up, RST button pushed or CPU RESTART 
command issued it will search for this subroutine and, if found, it will be run once. It can be used to initialise a 
MMBasic USER defined LCDPanel at power up: 

SUB MM.STARTUP 
  Print “I have been reset by CPU RESTART or power up” 
END SUB 

Using MM.STARTUP is similar to using the OPTION AUTORUN feature, the difference being that the 
AUTORUN option will cause the whole program in memory to be run from the start where MM.STARTUP 
will just run the code within the subroutine.  The AUTORUN option and MM.STARTUP can be used together 
and in that case the MM.STARTUP subroutine is run first, then the program in main memory. 
Note that you should not use MM.STARTUP for general setup of MMBasic (like dimensioning arrays, opening 
communication channels, etc.) before running a program.  The reason is that when you use the RUN command 
MMBasic will clear the interpreter's state ready for a fresh start.   

MM.PROMPT  
If a subroutine with this name exists it will be automatically executed by MMBasic instead of displaying the 
command prompt.  This can be used to display a custom prompt, set colours, define variables, etc. all of which 
will be active at the command prompt.   
This subroutine can be located anywhere in the main program or the library. 
Note that MMBasic will clear all variables and I/O pin settings when a program is run so anything set in this 
subroutine will only be valid for commands typed at the command prompt (i.e., in immediate mode).  As an 
example the following will display a custom prompt: 
 

SUB MM.PROMPT 
  PRINT TIME$ "> "; 
END SUB 

Note that while constants can be defined they will not be visible because a constant defined inside a subroutine 
is local to a subroutine.  However, DIM will create variables that are global, this should be used instead. 

Flow Diagram 
The operation of MMBasic at startup and the interaction between the special functions is best illustrated using a 
flow diagram.  The following is a high level diagram (for example, it does not show the complications caused 
by the CONTINUE command) but it does place the functions of MM.STARTUP and MM.PROMPT into 
context. It is the same as the previous Micromites except there is no library. MM.STARTUP must be included  
in the program somewhere. 



Page 63             Armmite F4 User Manual Page 63 

 
 
 
 
 
 
 
 
 
 
 
 



Page 64             Armmite F4 User Manual Page 64 

Memory Command 
The MEMORY command is available at the command prompt. It outputs information relating to current 
program and ram memory usage. For the ARMMite F4 the output identifies the Saved Variables Backup 
SRAM memory separately from the Program memory. LIBRARY LIST can be used to see details of what is in 
the library. 
 

> MEMORY 
Flash: 
   3K ( 2%) Program (62 lines) 
   1K ( 1%) 1 Embedded C Routine 
   1K ( 0%) 1 Embedded Fonts 
   1K ( 1%) Library 
 122K (96%) Free 
 
RAM: 
   1K ( 0%) 2 Variables 
   0K ( 0%) General 
 113K (100%) Free 
 
 
 
Backup SRAM (4K): 
   1K ( 1%) 2 Saved Variables (126 bytes) 
   3K (99%) Free 
 

Details of Program Flash. Shows 62 lines 
of code using 3K. This includes the HEX 
listing of the CSUB and the FONT. 
1K used for the binary copy of the CSUB 
and 1K for the binary copy of the FONT. 
The library occupies 1K at the end of the 
program memory, which is now reduced 
by this amount. 122K free. 
 
Total available RAM is normally 114K.  
(When OPTION CONTROLS is at the 
default value of 200). Increasing OPTION 
CONTROLS will reduce this. A maximum 
128K is available by setting OPTION 
CONTROLS 0.  
This shows the 2 variables using 1K. 
 
2 variables are saved with VAR SAVE and 
these use 1K, which is 1% of the 4K 
available for Saved Variables. 
 
Note: All sizes reported are to the nearest 
1K, and if not zero will show a minimum 
value of 1K. 
 

> LIBRARY LIST 
 
Sub MM.STARTUP 
Print "--------------------------------------------------" 
Print "Connected to: " 
MM.Info(DEVICE),Str$(MM.Info(VERSION)) 
Print "--------------------------------------------------" 
End Sub 
 
CSub LOG 
End CSub 

This shows the details stored in the library. 
 
The MM.STARTUP SubRoutine. 
Comments and spaces are removed. 
The library can hold straight MMBASIC 
code as well as FONTs and CSUBs 
 
 
 
The CSUB LOG. This is the binary copy 
of the CSUB. The HEX version is no 
longer needed or stored anywhere once it 
is placed into the library. 

 



Page 65             Armmite F4 User Manual Page 65 

Using the I/O pins 
Digital Inputs 
A digital input is the simplest type of input configuration.  If the input voltage is higher than 2.3V the logic 
level will be true (numeric value of 1) and anything below 1.00V will be false (numeric value of 0).  The inputs 
use a Schmitt trigger input so anything in between these levels will retain the previous logic level.  Pins marked 
as 5V are 5V tolerant and can be directly connected to a circuit that generates up to 5.5V without the need for 
voltage dropping resistors.   

In your BASIC program you would set the input as a digital input and use the PIN() function to get its level.  
For example: 

SETPIN PA0, DIN 
IF PIN(PA0) = 1 THEN PRINT "High" 

The SETPIN command configures pin PA0 as a digital input and the PIN() function will return the value of that 
pin (the number 1 if the pin is high).  The IF command will then execute the command after the THEN 
statement if the input was high.  If the input pin was low the program would just continue with the next line in 
the program. 

The SETPIN command also recognises a couple of options that will connect an internal resistor from the input 
to either the supply or ground.  This is called a "pullup" or "pulldown" resistor and is handy when connecting to 
a switch as it saves having to install an external resistor to place a voltage across the contacts.  

Analog Inputs 
Pins marked as ANALOG can be configured to measure the voltage on the pin.  The input range is from zero to 
3.3V and the PIN() function will return the voltage.  For example: 

> SETPIN PA0, AIN 
> PRINT PIN(PA0) 
 2.345 
> 

The PIN function internally takes 10 readings, discards the highest and lowest then averages the remaining 8 
'middle' readings. The ADC command uses a single sample. 

You will need a voltage divider if you want to measure voltages greater than 3.3V.  For small voltages you may 
need an amplifier to bring the input voltage into a reasonable range for measurement. 

The measurement uses the VREF+ pin as the reference voltage. This is tied to VCC on the STM32F404VET6 
and MMBasic scales the reading by assuming that the voltage on this pin is exactly 3.3V unless  

OPTION VCC voltage 

is used to nominate an adjusted voltage. The actual value of VREF+ can be calculated as: 

3.3 * PIN(“SREF”) / PIN(“IREF”)  

and this can be used to set OPTION VCC. 

The measurement of voltage is very sensitive to noise on the Analog Power and Ground pins.  For accurate and 
repeatable voltage measurements care should be taken with the PCB design to isolate the analog circuit from 
the digital circuits and ensure that the Analog Power supply is as noise free as possible.  Note that if the voltage 
on an analog input is greater than the voltage on the Analog Power pin it can cause damage or a “CPU 
Exception” (i.e., crash) when an attempt is made to read that voltage. 

Counting Inputs 
The pins marked as COUNT can be configured as counting inputs to measure frequency, period or just count 
pulses on the input. 

For example, the following will print the frequency of the signal on pin 15: 



Page 66             Armmite F4 User Manual Page 66 

> SETPIN PE3, FIN 
> PRINT PIN(PE3) 
110374 
> 

In this case the frequency is 110.374 kHz. 

By default, the gate time is one second which is the length of time that MMBasic will use to count the number 
of cycles on the input and this means that the reading is updated once a second with a resolution of 1 Hz.  By 
specifying a third argument to the SETPIN command it is possible to specify an alternative gate time between 
10 ms and 100000 ms.  Shorter times will result in the readings being updated more frequently but the value 
returned will have a lower resolution.  The PIN() function will always return the frequency in Hz regardless of 
the gate time used. 

For example, the following will set the gate time to 10ms with a corresponding loss of resolution: 
> SETPIN PE3, FIN, 10 
> PRINT PIN(PE3) 
110300 
> 

For accurate measurement of signals less than 10 Hz it is generally better to measure the period of the signal.  
When set to this mode the Armmite will measure the number of milliseconds between sequential rising edges 
of the input signal.  The value is updated on the low to high transition so if your signal has a period of (say) 100 
seconds you should be prepared to wait that amount of time before the PIN() function will return an updated 
value. 

The COUNTING pins can also count the number of pulses on their input.  When a pin is configured as a 
counter (for example, SETPIN PE3,CIN) the counter will be reset to zero and Armmite will then count every 
transition from a low to high voltage.  The counter can be reset to zero again by executing the SETPIN 
command a second time (even though the input was already configured as a counter). 

The response to input pulses is very fast and the Armmite can count pulses as narrow as 10 nS .  The frequency 
response depends on the load on the processor (i.e., the number of counting inputs and if serial or I2C 
communications is used).  It can be as high as 800 kHz with no other activity but is normally about 300 kHz.  

Digital Outputs 
All I/O pins can be configured as a standard digital output.  This means that when an output pin is set to logic 
low it will pull its output to zero and when set high it will pull its output to 3.3V.   In MMBasic this is done 
with the PIN command.  For example, PIN(PE3) = 0 will set pin PE3 to low while PIN(PE3) = 1 will 
set it high.  When operating in this mode, a pin is capable of sourcing 10 mA which is sufficient to drive a LED 
or other logic circuits running at 3.3V.   

The "OC" option on the SETPIN command makes the output pin open collector.  This means that the output 
driver will pull the output low (to zero volts) when the output is set to a logic low but will go to a high 
impedance state when set to logic high.  If you then connect a pull-up resistor to 5V (on pins that are 5V 
tolerant) the logic high level will be 5V (instead of 3.3V using the standard output mode).  The maximum pull-
up voltage in this mode is 5.5V. 

Pulse Width Modulation 
The PWM (Pulse Width Modulation) command allows the Armmite to generate square waves with a program 
controlled duty cycle.  By varying the duty cycle you can generate a program controlled voltage output for use 
in controlling external devices that require an analog input (power supplies, motor controllers, etc.).  The PWM 
outputs are also useful for driving servos and for generating a sound output via a small transducer. 
There are three PWM controllers; the first two have three outputs and the last two to give a total of eight PWM 
outputs.  The frequency of each controller can be independently set from 1 Hz to 20MHz and the duty cycle for 
each output (i.e., eight outputs) can also be independently set from between 0% and 100% with a 0.1% 
resolution when the frequency is below 25 kHz (above 25 kHz the resolution is 1% or better up to 250 kHz). 
When the Armmite is powered up or the PWM OFF command is used the PWM outputs will be set to high 
impedance (they are neither off nor on).  So, if you want the PWM output to be low by default (zero power in 
most applications) you should use a resistor to pull the output to ground when it is set to high impedance.  
Similarly, if you want the default to be high (full power) you should connect the resistor to 3.3V. 



Page 67             Armmite F4 User Manual Page 67 

Interrupts 
Interrupts are a handy way of dealing with an event that can occur at an unpredictable time.  An example is 
when the user presses a button.  In your program you could insert code after each statement to check to see if 
the button has been pressed but an interrupt makes for a cleaner and more readable program. 

When an interrupt occurs MMBasic will execute a special section of code and when finished return to the main 
program.  The main program is completely unaware of the interrupt and will carry on as normal. 

Any I/O pin that can be used as a digital input can be configured to generate an interrupt using the SETPIN 
command with up to ten interrupts active at any one time.  Interrupts can be set up to occur on a rising or falling 
digital input signal (or both) and will cause an immediate branch to the specified user defined subroutine.  The 
target can be the same or different for each interrupt.  Return from an interrupt is via the END SUB or EXIT 
SUB commands.  Note that no parameters can be passed to the subroutine however within the interrupt 
subroutine calls to other subroutines are allowed. 
If two or more interrupts occur at the same time they will be processed in order of the interrupts as defined with 
SETPIN.  During the processing of an interrupt all other interrupts are disabled until the interrupt subroutine 
returns.  During an interrupt (and at all times) the value of the interrupt pin can be accessed using the PIN() 
function. 
Interrupts can occur at any time but they are disabled during INPUT statements.  Also interrupts are not 
recognised during some long hardware related operations (e.g., the TEMPR() function) although they will be 
recognised if they are still present when the operation has finished.  When using interrupts, the main program is 
completely unaffected by the interrupt activity unless a variable used by the main program is changed during 
the interrupt. 
Because interrupts run in the background they can cause difficult to diagnose bugs.  Keep in mind the following 
factors when using interrupts: 
 Interrupts are only checked by MMBasic at the completion of each command, and they are not latched by 

hardware. This means that an interrupt that lasts for a short time can be missed, especially when the 
program is executing commands that take some time to execute. Most commands will execute in under 
15µs however some commands (such as the TEMPR() function) can block interrupts for up to 200ms and 
it is possible for an interrupt (e.g., a button press) to occur and vanish within this window and in that case 
it will never be recognised. 

 When inside an interrupt all other interrupts are blocked so your interrupts should be short and exit as 
soon as possible.  For example, never use PAUSE inside an interrupt.  If you have some lengthy 
processing to do you should simply set a flag and immediately exit the interrupt, then your main program 
loop can detect the flag and do whatever is required. 

 The subroutine that the interrupt calls (and any other subroutines called by it) should always be exclusive 
to the interrupt.  If you must call a subroutine that is also used by an interrupt you must disable the 
interrupt first (you can reinstate it after you have finished with the subroutine). 

 Remember to disable an interrupt when you have finished needing it – background interrupts can cause 
strange and non-intuitive bugs.   

In addition to interrupts generated by the change in state of an I/O pin, an interrupt can also be generated by 
other sections of MMBasic including timers and communications ports.  The list of all these interrupts (in high 
to low priority ranking) is: 
      ON KEY individual     
        ON KEY general   

   COM1: Serial Port        
        COM2: Serial Port   

   COM3: Serial Port   
        COM4: Serial Port   
         GUI Int Down   
        GUI Int Up   

   WAV Finished  
         ADC completion   
        IR Receive   



Page 68             Armmite F4 User Manual Page 68 

         Keypad   
         Interrupt command/CSub Interrupt   
         I/O Pin Interrupts in order of definition   
         Tick Interrupts (1 to 4 in that order)   
As an example: If an ON KEY interrupt occurred at the same time as a COM1: interrupt the ON KEY interrupt 
subroutine would be executed first and then, when the interrupt subroutine finished, the COM1: interrupt 
subroutine would then be executed. 
 
 
 

Interrupts (polled) vs SETPIN CIN,PIN,FIN (hardware) 
 
For every version of MMBasic only interrupts generated by SETPIN CIN, PIN, FIN are based on true H/W 
interrupts and thus will always give accurate results. All other interrupts are polled at the end of each MMBasic 
statement so the following applies: 
 
EVERY version of MMbasic checks for interrupts at the end of each Basic statement with the single exception 
that the checks are also made during a PAUSE statement 
 
For every version of MMBasic SETPIN n, INTx is not a true interrupt but the pin is read at the end of each 
Basic statement and a S/W interrupt is triggered if the pin has changed in the required manner 
 
For every version of MMBasic Pin interrupts will be lost if the pin reverts state while a single Basic statement 
is running 
 
For every version of MMBasic this is more likely to happen with commands that take longer but could happen 
with any command if the pin change is short enough 
 
For every version of MMBasic this is most likely to happen with commands that communicate with H/W or 
move lots of data (e.g. TEMPR, graphics commands, MATH commands (where relevant)) 
 
For every version of MMBasic if this is critical you need to manage this in your code by using the timer 
command to see how long things take to process and find a relevant workaround 
 
 
For every version of MMBasic the core Basic language is pretty much identical and the main differences are 
the way the firmware interacts with the various H/W peripherals BUT the basics of even this are the same 
(e.g.serial I/O is always interrupt driven, serial output is non-blocking, serial receive happens in the background 
and writes to the receive buffer etc. etc. etc........) 
 



Page 69             Armmite F4 User Manual Page 69 

Armmite F4 Deployment Considerations 
This section discusses some Armmite F4 deployment considerations. These maybe relevant if you want to use 
the Armmite F4 for a dedicated task where it will run unattended. 

Setting Option VCC 
Option VCC defaults to 3.3V if not set. It is used during analogue readings as the value for the external 
reference. The external reference VREF+ is tied to VCC on the STM32F407VET6 board.  
There are two functions that can help calibrate the ADC input to allow for when the VCC is not exactly 3.3V 
and for individual chip variations. 
PIN(SREF) returns the measurement of the internal reference (nominally 1.21V) that the manufacturer has 
burned into the chip during production. This is measured at exactly 3.3V and 25 °C. 
PIN(IREF) gives the value of the internal reference as measured in your environment. OPTION VCC is 
required to be set to the default 3.3v value during this measurement to give a valid result. 
Using these together you can calculate the actual voltage the chip is seeing and hence set OPTION VCC using 
the following two commands. 
OPTION VCC 3.3                                                   ‘Set VCC to default value incase its  previously been set. 
OPTION VCC 3.3 * PIN(IREF)/PIN(SREF)      ‘Now set to calculated value. 
The option is not permanent and should be set in any program that does analogue measurement. It returns to the 
default value on a power reset or CPU RESTART.  

Armmite F4 Reliance on Battery Backed Ram 
The OPTIONs on the Armmite F4 are stored in battery backed ram. The ram is supplied via the CR1220 battery 
and the main VCC supply. When VCC is removed the CR1220 maintains the ram. If the battery cannot sustain 
the backup ram then the OPTIONs are lost. On restart the firmware understands this as a corruption and re-
initialises the Options, i.e all Options are set to default values. Any variables saved by VAR SAVE are cleared. 
The AUTORUN option will be OFF, the USB Console is enabled, the default ILI9341_16 display is enabled 
and touch is enabled as well as all other default values. The date and time will not be set. 
From firmware 5.07.01 onward the Program Memory in NOT cleared. See the next section, Running Armmite 
F4 without Backup Battery for how to embed the required options in the program. 

Battery Life and Monitoring VBAT 
If the Armmite F4 is powered most of its life then the drain on the backup battery would be expected to be 
minimal and a fresh CR1220 should last a couple of years or more. 
This thread on TBS discusses the life of the CR1220 battery and possible use of CR2032 and AAA batteries to 
extend the battery life. 
The PIN(BAT) function returns the voltage seen at 
the VBAT connection. At first look this looks 
suitable to monitor the battery condition, but it will 
actually measure the higher of VCC and the 
battery. (less diode drop). The BAT54C diode 
parallels the CR1220 and VCC. 
This circuit is is from the above thread and is a 
possible method of moitoring the battery condition 
using an additional analogue pin. 

 
 
 
 

https://www.thebackshed.com/forum/ViewTopic.php?TID=11334&P=15


Page 70             Armmite F4 User Manual Page 70 

Running Armmite F4 without Backup Battery 
This section discusses using the Armmite F4 as an embedded controller and not relying on the backup battery 
being maintained. i.e. You want to place it in the corner and let it run doing a particular job without needing to 
ever service it. Once programed, when power is supplied it should just power up and run. It would restart 
automatically after a power outage. It does not rely on the battery backed ram.  

No Battery and Embedding Configuration Options in a Program 
Normally configurations options such as OPTION LCDPANEL are entered at the command prompt to 
configure the Armmite for any attached display panel, touch controller, etc.  The drivers for these devices are 
enabled at startup so after using the OPTION command the Armmite will immediately restart (i.e., reboot).  
The user does not notice this (because it is quick) but this it is the reason why the commands should be entered 
at the command prompt and not in a program. 
It is possible to enter these OPTIONs at the start of the program if a few simple rules are followed.  These are: 
 The commands must be at the start of the programs (they may be preceded by comments). 

 The commands should be in the same order as they would be entered at the command prompt.  For 
example, OPTION LCDPANEL should come before OPTION TOUCH. 

 They should be thoroughly tested at the command prompt before being embedded in a program as errors 
may not be detected and can cause the Armmite to behave strangely. 

 They must be followed by the command OPTION SAVE which will save the options and reboot the 
system. 

When MMBasic finds these OPTION commands in a program it will update the Option in memory but will 
delay the saving of the options and the restart the processor until it encounters the OPTION SAVE command. 
All the settings will be saved to battery backed RAM (now powered from main supply even if no backup 
battery is available) and the processor will be restarted to enable all the required Options to be initiated at the 
same time.  After the restart the program will be run again but this time the Option commands will be skipped 
over. The Option commands will be processed during a restart if power has been lost to the battery backed 
RAM since the last restart. i.e. the Options have been lost. 
The calibration parameters for the touch controller can also be configured in this way.  To do this you should 
use GUI CALIBRATE to calibrate the touch screen at the command prompt in the normal way.  Then use 
OPTION LIST which will list the calibration parameters as something like: 

GUI CALIBRATE 0, 252, 306, 932, 730 

This string must be included before the OPTION SAVE so that the touch calibration settings will be saved 
along with the other options. 
Errors in the configuration commands (for example the same I/O pin allocated to two different functions) are 
often detected during the reboot.  However, this is not guaranteed so the configuration commands should be 
thoroughly tested at the command prompt before being embedded in a program. 
This is an example of the sequence to configure an SPI ILI 9341 LCD Panel at startup, configure and calibrate 
touch, set the console to the serial console at 38400 bauds and set the backlight to 80%. 

‘These embedded OPTIONs will disable the default LCDPANEL 
‘Configure the ILI9341 and the Touch panel and switch to the serial 
‘console at 38400 and then restart with the new settings 
OPTION LCDPANEL DISABLE  
OPTION LCDPANEL ILI9341, LANDSCAPE, PC7, PC6, PD11 
OPTION TOUCH PC12, PC5 
GUI CALIBRATE 0, 3756, 3901, -882, -647  
BACKLIGHT 80,S 
OPTION SERIAL CONSOLE ON 
OPTION BAUDRATE 38400 
OPTION SAVE 
‘The main program is then placed here 
‘it must include the MM.STARTUP Subroutine somewhere 
SUB MM.STARTUP 
  OPTION AUTORUN ON 
END SUB 



Page 71             Armmite F4 User Manual Page 71 

OPTION AUTORUN ON in MM.STARTUP (No Battery Backed up Options) 
To have the Embedded Option run  at startup requires OPTION AUTORUN ON to be set. The default is OFF, 
so when the default options are loaded at startup the the program will not run to load the Options embedded in 
the program, however the MM.STARTUP routine is always run if it exists. 
The MM.STARTUP subroutine is used to iniate the OPTION AUTORUN ON command. When the Armmite 
F4 is first powered up, RST button pushed or CPU RESTART command issued it will search for this 
subroutine and, if found, it will be run once.  
This simple MM.STARTUP subroutine must be included in the program somewhere. It will cause the program 
in memory to execute at startup. 
SUB MM.STARTUP 
    OPTION AUTORUN ON 
END SUB 

This more complex version may be useful during development. It will auto execute the program after the initial 
power up, but will return to the command prompt for any further CPU RESTART or activation of the RST 
button. This can be useful if you want to manually start the main program during development. If your, not 
quite finished program does not behave you can push the RST button to get the command prompt back. 
Any power reset, however will automatically restart the main program. If your, not quite finished program does 
not behave you can push the RST button to get the command prompt back. 
 

SUB MM.STARTUP 
   IF MM.INFO (RESTART)=0 THEN 
      OPTION AUTORUN ON 
   ELSE 
     OPTION AUTORUN OFF 
   END IF     
END SUB 

Using the Library on Armmite F4 with No Battery Backed up Options 
For the standard Armmite F4 development board add the command LIBRARY CHECK to MM.STARTUP to 
restore the pointer to the Library if it exists. OPTION FLASH_CS defaults to 35 which is the correct CS (Chip 
Select) pin for the Windbond flash on this board.i.e. 
 
SUB MM.STARTUP     
    LIBRARY CHECK 
     OPTION AUTORUN ON 
END SUB 
 

On the MINI Armmite F4 development board the Windbond CS pin is 77, so the default value will need to be 
changed by setting the OPTION FLASH_CS to 77 in MM.STARTUP. i.e. 
 
SUB MM.STARTUP 

     OPTION FLASH_CS 77 
    LIBRARY CHECK 
    OPTION AUTORUN ON 
END SUB 

 
 

VAR Save VAR Restore not persistant. 
If running without a battery the variables stored using VAR SAVE are not persistant after power is removed. If 
you need persistant data between program runs when the power has been removed then the VAR FSAVE and 
VAR FRESTORE commands can be used to save and restore the variables stored in battery backed ram to/from 
the W25Q16 flash. 
 



Page 72             Armmite F4 User Manual Page 72 

RTC will not maintain time if power removed 
If running without a battery the RTC will be reset if power is disconnected. It would need to be manually reset. 
If you don’t have a battery connected you could use command below to see how long since last power cycle. 
 ? DATETIME$(NOW) 
 

Mitigating Battery Failure 
To mitigate against battery failure, configure and test without the battery. Insert the battery after is all 
configured and set the time.  
When the battery is good a startup after a power recycle will reload the same Options and restart. The time is 
maintained. 
If the battery fails, a startup after a power recycle will reload the Options over the now default Options and 
restart. The time is NOT maintained.  
 
 
 



Page 73             Armmite F4 User Manual Page 73 

Electrical Characteristics 
Power Supply 

Voltage range: 2.3 to 3.6V (3.3V nominal).  Absolute maximum 4.0V. 
Current draw: 70 mA without LCD. 
Current in sleep: 40 µA (plus current draw from the I/O pins). 

Digital Inputs 
Logic Low: 0 to 1.0V 
Logic High: 2.5V to 3.3V on normal pins 

2.5V to 5.5V on pins rated at 5V 
Input Impedance: >1 MΩ.  All digital inputs are Schmitt Trigger buffered. 
Frequency Response: Up to 300 kHz (pulse width 20 nS or more) on the counting inputs. 

Analog Inputs 
Voltage Range: 0 to 3.3V 
Accuracy: Analog measurements are referenced to VREF+ which is connected to the supply 

voltage. If the supply voltage is precisely 3.3V the typical accuracy of readings 
will be ±1%. (See OPTION VCC to adjust voltage to match actual voltage) 

Input Impedance: >1 MΩ (for accurate readings the source impedance should be < 5K) 

Digital Outputs 
Typical current draw or sink ability on any I/O pin: 10 mA 
Absolute maximum current draw or sink on any I/O pin: 25 mA 
Absolute maximum current draw or sink for all I/O pins combined: 150 mA 
Maximum open collector voltage: 5.5V 

Timing Accuracy 
All timing functions (the timer, tick interrupts, PWM frequency, baud rate, etc.) are dependent on the 
internal clock. The Armmite is crystal controlled so accuracy is expected to be worst case 50ppm (0.005%) 

PWM Output 
Frequency range: 1 Hz to 20MHz 
Duty cycle: 0% to 100% with 0.1% resolution below 25 kHz 

Serial Communications Ports 
Console: Default 115200 baud.  Range is 2400 bps to 921600 bps 
COM ports Default 9600 baud.  Range is 2400 bps to 1843200bps  
The reliability of the higher baudrates will depend on length of cable etc. The 921600bps for the console  
is nominated based on it being the highest in the TeraTerm drop down. It may well be 1843200bps as well. 

Other Communications Ports 
SPI 10  Hz to 10 MHz  
I2C 10kHz to 400 kHz. 
1-Wire: Fixed at 15 kHz. 

Flash Endurance 
Over 10,000 erase/write cycles. 
Every program save incurs one erase/write cycle.  In a normal program development, it is highly unlikely 
that more than a few hundred program saves would be required. 
Saved variables (VAR SAVE command) and configuration options (the OPTION command) are stored in 
the RTC battery backed up RAM and DO NOT use or impact the life of the flash. 



Page 74             Armmite F4 User Manual Page 74 

Audio Output 
The Armmite F4 can play WAV and FLAC files from the SD card, and generate precise sine wave tones.  All 
these are outputted on the DAC pins PA5 and PA4.  The STM32 chip includes its own DAC (digital to analog 
converter) so an output filter network is not needed. 
The Armmite F4 has no audio socket connect to the board as supplied. If you connected to PA4 and PA5 then 
PA4 is the right channel, and PA5 is the left channel with reference to the Armite ground.  The signal level at 
full volume is about 1V RMS (approx 3V peak to peak).  The output is high impedance suitable for feeding into 
an amplifier.  It cannot directly drive a loudspeaker, headphones or any low impedance load and might be 
damaged if that was attempted. 
This thread on TBS forum discusses possible circuits to drive a headset. 
https://www.thebackshed.com/forum/ViewTopic.php?FID=16&TID=13631 
 
MMBasic can generate audio in several formats ranging from simple sine wave tones through to playing WAV 
and FLAC, audio files. (MP3 is not supported because of high processor resources required to decode). 
If adding an audio socket, it’s a good idea to add 4.7K resistors in series with the connections to PA4 and PA5 
to protect the DAC against short circuits as the plug is inserted into the socket. 

 

Playing WAV and FLAC Files 
The PLAY command will play an audio file residing on an SD card to the sound output.  It can be used to 
provide background music, add sound effects to programs and provide informative announcements.   
The syntax of the command is one of the following depending of the format of the file: 

 PLAY WAV file$ [, interrupt_on_completion] 
  PLAY FLAC file$ [, interrupt_on_completion] 

file$ is the name of the audio file to play.  It must be on the SD card and the appropriate extension (eg .WAV) 
will be appended if missing.  The audio will play in the background (ie, the program will continue without 
pause).  interrupt is optional and is the name of a subroutine which will be called when the file has finished 
playing.   
Most variations in encoding are supported (see the PLAY command in the command listing for the details). 
The WAV/FLAC files can be 8 or 16 bit encoded, and samples rates can be 8,16 or 44.1kHz. 
To convert a file to this format a program or website such as http://audio.online-convert.com/convert-to-wav 
can be used (for this website set 8-bit or 16-bit resolution, set sampling rate to 8000 or 16000 or 44100, set 
“Audio Channels” to stereo. Click “Normalise audio”.  Set PCM unsigned 8-bit in ADVANCED OPTIONS). 

Generating Sine Waves 
The PLAY TONE command also uses the audio output and will generate sine waves with selectable 
frequencies for the left and right channels.  This feature is intended for generating attention catching sounds 
but, because the frequency is very accurate, it can be used for many other applications.  For example, signalling 
DTMF tones down a telephone line or testing the frequency response of loudspeakers.   
The syntax of the command is: 

PLAY TONE left, right, duration, interrupt 
left and right are the frequencies in Hz to use for the left and right channels.  The tone plays in the background 
(the program will continue running after this command) and 'dur' specifies the number of milliseconds that the 
tone will sound for.   
duration is optional and if not specified the tone will continue until explicitly stopped or the program 
terminates.  interrupt (if specified) will be triggered when the duration has finished. 
The frequency can be from 1 Hz to 20 KHz and is very accurate (it is based on a crystal oscillator).  The 
frequency can be changed at any time by issuing a new PLAY TONE command. 

https://www.thebackshed.com/forum/ViewTopic.php?FID=16&TID=13631
http://audio.online-convert.com/convert-to-wav


Page 75             Armmite F4 User Manual Page 75 

Utility Commands 
There are a number of commands that can be used to manage the sound output: 
PLAY PAUSE  Temporarily halt (pause) the currently playing file or tone. 
PLAY RESUME  Resume playing a file or tone that was previously paused. 
PLAY STOP Terminate the playing of the file or tone.  The sound output will also be 

automatically stopped when the program ends. 
PLAY VOLUME L, R  Set the volume to between 0 and 100 with 100 being the maximum volume.  The 

volume will reset to the maximum level when a program is run. 
  
  

Changing the volume via the software will slightly degrade the output quality, but probably not significantly for 
most cases. i.e. at maximum volume the audio produced by the DAC is using 4096 steps/levels to generate the 
audio wave. At 50% volume this would only be 2048 steps/levels. Playing at full volume with an analogue 
volume control on the output would ensure the highest quality. 



Page 76             Armmite F4 User Manual Page 76 

Special Device Support 
 

To make it easier for a program to interact with the external world the MMBasic firmware of the Armmite F4 
includes specific drivers for a number of common peripheral devices.  

These are:  

 Infrared remote control receiver and transmitter 
 The DS18B20 temperature sensor and DHT22 temperature/humidity sensor 
 LCD display modules 
 Numeric keypads 
 Ultrasonic distance sensor 

Infrared Remote Control Decoder 
You can easily add a remote control to your project using the IR command.  When enabled this function will 
run in the background and interrupt the running program whenever a key is pressed on the IR remote control.   
It will work with any NEC or Sony compatible remote controls including ones that generate extended  
messages.  Most cheap programmable remote controls will 
generate either protocol and using one of these you can add a 
sophisticated flair to your project. The NEC protocol is also 
used by many other manufacturers including Apple, Pioneer, 
Sanyo, Akai and Toshiba so their branded remotes can be used. 
To detect the IR signal you need an IR receiver connected to the 
IR pin (pin PE2 on the Armmite F4) as illustrated in the 
diagram.  The IR receiver will sense the IR light, demodulate 
the signal and present it as a TTL voltage level signal to this pin.  
Setup of the I/O pin is automatically done by the IR command. 
NEC remotes use a 38kHz modulation of the IR signal and 
suitable receivers tuned to this frequency include the Vishay 
TSOP4838, Jaycar ZD1952 and Altronics Z1611A.  

 

Sony remotes use a 40 kHz modulation but receivers for this frequency can be hard to find.  Generally, 38 kHz 
receivers will work but maximum sensitivity will be achieved with a 40 kHz receiver. 
To setup the decoder you use the command: 

IR  dev, key, interrupt 
Where dev is a variable that will be updated with the device code and key is the variable to be updated with the 
key code.  Interrupt is the interrupt subroutine to call when a new key press has been detected.  The IR 
decoding is done in the background and the program will continue after this command without interruption.  
This is an example of using the IR decoder: 

IR DevCode, KeyCode, IR_Int        ' start the IR decoder 
DO 
  ' < body of the program > 
LOOP 
 
SUB IR_Int                         ' a key press has been detected 
  PRINT "Received  device = " DevCode "  key = " KeyCode 
END SUB 

IR remote controls can address many different devices (VCR, TV, etc) so the program would normally examine 
the device code first to determine if the signal was intended for the program and, if it was, then take action 
based on the key pressed.  There are many different devices and key codes so the best method of determining 
what codes your remote generates is to use the above program to discover the codes. 



Page 77             Armmite F4 User Manual Page 77 

Infrared Remote Control Transmitter 
Using the IRSEND command you can transmit a 12 bit Sony infrared 
remote control signal.  This is intended for Micromite/Armmite to 
Micromite/Armmite communications but it will also work with Sony 
equipment that uses 12 bit codes.  Note that all Sony products require 
that the message be sent three times with a 26 ms delay between each 
message. The IRSEND command  is available on the Armmite F4. 
 
The circuit on the right illustrates what is required.  The transistor is 
used to drive the infrared LED because the output of the Armmite is 
limited to less than 25mA.  This circuit provides about 50 mA to the 
LED. 
To send a signal you use the command: 

IRSEND pin, dev, key 
Where pin is the I/O pin used, dev is the device code to send and key is the key code.  Any I/O pin on the 
Armmite can be used and you do not have to set it up beforehand (IRSEND will automatically do that). 
The modulation frequency used is 38 kHz and this matches the common IR receivers (described in the previous 
page) for maximum sensitivity when communicating between two Armmites/Micromites. 

Measuring Temperature 
The TEMPR() function will get the temperature from a DS18B20 
temperature sensor.  This device can be purchased on eBay for about $5 in a 
variety of packages including a waterproof probe version.   
The DS18B20 can be powered separately by a 3V to 5V supply or it can 
operate on parasitic power from the Armmite/Micromite as shown on the 
right.  Multiple sensors can be used but a separate I/O pin and a 4.7K pullup 
resistor is required for each one.   
To get the current temperature you just use the TEMPR() function in an 
expression.   For example: 

PRINT "Temperature: " TEMPR(pin) 
Where 'pin' is the I/O pin to which the sensor is connected.  You do not have 
to configure the I/O pin, that is handled by MMBasic. 
The returned value is in degrees C with a resolution of 0.25 ºC and is accurate 
to ±0.5 ºC.  If there is an error during the measurement the returned value 
will be 1000. 
The time required for the overall measurement is 200ms and the running 
program will halt for this period while the measurement is being made.  This 
also means that interrupts will be disabled for this period.  If you do not want 
this you can separately trigger the conversion using the TEMPR START 
command then later use the TEMPR() function to retrieve the temperature reading.  The TEMPR() function 
will always wait if the sensor is still making the measurement. 
For example: 

TEMPR START PE0 
< do other tasks > 
PRINT "Temperature: " TEMPR(PE0) 

Measuring Humidity and Temperature 
The HUMID command will read the humidity and temperature from a DHT22 (or DHT11 ) 
humidity/temperature sensor.  This device is also sold as the RHT03 or AM2302 but all are compatible and can 
be purchased on eBay for under $5.   

Any
Micromite

I/O Pin

4.7K

3V to 
5V

Normal Power

3.3V

1K

58 ohms

+5V

BC338

IR 
LEDMicromite

Any
Micromite

I/O Pin

4.7K

3V to 
5V

Parasitic Power



Page 78             Armmite F4 User Manual Page 78 

The DHT22 can be powered from 3.3V or 5V (5V is recommended) and it should have a pullup resistor on the 
data line as shown.  This is suitable for long cable runs (up to 20 meters) but for short runs the resistor can be 
omitted as the Armmite also provides an internal weak 
pullup. To get the temperature or humidity you use the 
BITBANG HUMID command with arguments as 
follows: 

BITBANG HUMID pin, tVar, hVar[,version] 

Valid codes for version are: 
1 = DHT11 
0 or omitted = DHT22 
 

  

Where 'pin' is the I/O pin to which the sensor is connected.  You can use any I/O pin but if the DHT22 is 
powered from 5V it must be 5V capable.  The I/O pin will be automatically configured by MMBasic.   

'tVar' is a floating point variable in which the temperature is returned and 'hVar' is a second variable for the 
humidity.  Both of these variables must be declared first as floats (using DIM).  The temperature is returned as 
degrees C with a resolution of one decimal place (eg,  23.4) and the humidity is returned as a percentage 
relative humidity (eg, 54.3). 

For example: 
DIM FLOAT temp, humidity 
HUMID pin, temp, humidity 
PRINT "The temperature is" temp " and the humidity is" humidity 

Measuring Distance 
Using a HC-SR04 ultrasonic sensor and the DISTANCE() function you can measure the distance to a target.   
This device can be found on eBay for about $4 and it will measure the distance to a target from 3cm to 3m.  It 
works by sending an ultrasonic sound pulse and measuring the time it 
takes for the echo to be returned. 
Compatible sensors are the SRF05, SRF06, Parallax PING and the 
DYP-ME007 (which is waterproof and therefore good for monitoring 
the level of a water tank). 
On the Armmite you use the DISTANCE function as follows: 

d = DISTANCE(trig, echo) 
Where trig is the I/O pin connected to the "trig" input of the sensor and 
echo is the pin connected the "echo" output of the sensor.  You can also 
use 3-pin devices and in that case only one pin number is specified.   
The value returned is the distance in centimetres to the target.  The I/O pins are automatically configured by 
this function but note that they should be 5V capable as the HC-SR04 is a 5V device. 

LCD Display 
The LCD command will display text on a standard LCD module with the 
minimum of programming effort.   
This command will work with LCD modules that use the KS0066, 
HD44780 or SPLC780 controller chip and have 1, 2 or 4 lines.  Typical 
displays include the LCD16X2 (futurlec.com), the Z7001 
(altronics.com.au) and the QP5512 (jaycar.com.au).  eBay is another 
good source where prices can range from $10 to $50. 
To setup the display you use the LCD INIT command: 

BITBANG LCD INIT d4, d5, d6, d7, rs, en 
d4, d5, d6 and d7 are the numbers of the I/O pins that connect to inputs D4, D5, D6 and D7 on the LCD module 
(inputs D0 to D3 and R/W on the module should be connected to ground).  'rs' is the pin connected to the 
register select input on the module (sometimes called CMD or DAT).  'en' is the pin connected to the enable or 
chip select input on the module.   

Any
Micromite

I/O Pin

4.7K

3V to 
5V



Page 79             Armmite F4 User Manual Page 79 

Any I/O pins can be used and you do not have to set them up beforehand (the LCD command automatically 
does that for you).  The following shows a typical set up for a Micromite. A display can be setup on an 
Armmite using appropriate I/O pins. 

 

To display characters on the module you use the LCD command: 
LCD line, pos, data$ 

Where line is the line on the display (1 to 4) and pos is the position on the line where the data is to be written 
(the first position on the line is 1).  data$ is a string containing the data to write to the LCD display.  The 
characters in data$ will overwrite whatever was on that part of the LCD. 

The following shows a typical usage where d4 to d7 are connected to pins 2 to 4 on a Micromite, rs is 
connected to pin 23 and en to pin 24. 

BITBANG LCD INIT 2, 3, 4, 5, 23, 24 
BITBANG LCD 1, 2, "Temperature" 
BITBANG LCD 2, 6, STR$(TEMPR(15))     ' DS18B20 connected to pin 15 

Note that this example also uses the TEMPR() function to get the temperature (described above). 

Keypad Interface 
A keypad is a low tech method of entering data into an Armmite/Micromite based system.  They support either 
a 4x3 keypad or a 4x4 keypad and the monitoring and decoding of key presses is done in the background.  
When a key press is detected an interrupt will be issued where the program can deal with it. 

Examples of a 4x3 keypad and a 4x4 keypad are the Altronics S5381 and S5383 (go to www.altronics.com). 

To enable the keypad feature you use the command: 
KEYPAD  var, int, r1, r2, r3, r4, c1, c2, c3, c4 

Where var is a variable that will be updated with the key code and int is the name of the interrupt subroutine to 
call when a new key press has been detected.  r1, r2, r3 and r4 are the pin numbers used for the four row 
connections to the keypad (see the diagram below) and c1, c2, c3 and c4 are the column connections.  c4 is only 
used with 4x4 keypads and should be omitted if you are using a 4x3 keypad.   
Any I/O pins on the Micromite can be used and you do not have to set them up beforehand, the KEYPAD 
command will automatically do that for you.  The example below is for a Micromite. An Armmite can be used 
if appropriate I/O pins are selected. 



Page 80             Armmite F4 User Manual Page 80 

C1

C2

C3

C4

+3.3V

10 0 11 23

7 8 9 22

4 5 6 21

1 2 3 20

Micromite

R1

R2

R3

R4

 
The detection and decoding of key presses is done in the background and the program will continue after this 
command without interruption.  When a key press is detected the value of the variable var will be set to the 
number representing the key (this is the number inside the circles in the diagram above).  Then the interrupt 
will be called. 
For example: 

Keypad KeyCode, KP_Int, 2, 3, 4, 5, 21, 22, 23   ' 4x3 keyboard 
DO 
  < body of the program > 
LOOP 
 
SUB KP_Int                          ' a key press has been detected 
  PRINT "Key press = " KeyCode 
END SUB 

WS2812 and SK6812 RGBW Support 
The Armmite F4 has built in support for the WS2812 multicolour LED chip. This chip needs a very specific 
timing to work properly and with the WS2812 command it is easy to control these devices with minimal effort.  

This command will output the required signals needed to drive a chain of WS2812 LED chips connected to the 
pin specified and set the colours of each LED in the chain.  The syntax of the command is: 

BITBANG WS2812 type, pin, nbr, colours%()  

Note that the pin must be set to a digital output before this command is used. 

The colours%() array should be sized to have exactly the same number of elements as the number of LEDs to 
be driven. Each element in the array should contain the colour in the normal RGB888 format (0 - &HFFFFFF).  
There is no limit to the size of the WS2812 string supported. 

'type' is a single character specifying the type of chip being driven as follows: 
O = original WS2812 
B = WS2812B 
S = SK6812 
W=SK6812 RGBW 

‘nbr’ is the number of LEDS in the chain. (1-256) 

As an example: 
DIM b%(4)=(RGB(red), Rgb(green), RGB(blue), RGB(Yellow), Rgb(cyan)) 
SETPIN 5, DOUT 
BITBANG WS2812 O, 5,5, b%() 
will output the specified colours to an array of five WS2812 LEDs daisy chained off pin 5. 



Page 81             Armmite F4 User Manual Page 81 

SD Card Support 
 

The SD card is always enabled in the Armmite F4 firmware and no configuration is necessary. 
The Armmite F4 has full support for SD cards.  This includes opening files for reading, writing or random 
access and loading and saving programs and the files created can also be read/written on personal computers 
running Windows, Linux or the Mac operating system.  

It is recommended to use SD cards up to 32GB, formatted as FAT32 with standard 512byte block size. 
Small capacity cards may not be reliable so the smallest recommended size is 8GB formatted as FAT32. 

The Armmite F4 does support exFAT for cards over 32Gb. It does not support non standard block sizes (Not 
512bytes). However, The FATFS implementation for exFAT is not complete and does not allow thing like 
relative addressing (../file). Also exFAT is much slower than FAT32 so you are recommended to use cards of 
32GB or less formatted with the standard 512byte block size. 

In the following note that: 
 The filename can be a string expression, variable or constant.  If it is a constant the string must be quoted 

(eg, KILL "MYPROG.BAS"). 
 Long file/directory names are supported in addition to the old 8.3 format. 
 The maximum file/path length is 63 characters. 
 Upper/lowercase characters and spaces are allowed although the file system is not case sensitive. 
 Directory paths are allowed in file/directory strings. (ie, OPEN "/dir1/dir2/file.txt" FOR …). 
 Forward slashes or back slashes are valid in paths between directories.  Eg /dir/file.txt  or  \dir\file.txt. 
 The current MMBasic time is used for file create and last access times. 
 Up to ten files can be simultaneously open. 
 Except for INPUT, LINE INPUT and PRINT the # in #fnbr is optional and may be omitted. 

 OPEN fname$ FOR mode AS #fnbr 
Opens a file for reading or writing.  'fname$' is the file name.  'mode' can be INPUT, OUTPUT, APPEND 
or RANDOM.  ‘#fnbr’ is the file number (1 to 10).   

 PRINT #fnbr, expression [[,; ]expression] … etc 
Outputs text to the file opened as #fnbr. 

 INPUT #fnbr, list of variables 
Read a list of comma separated data into the variables specified from the file previously opened as #fnbr. 

 LINE INPUT #fnbr, variable$ 
Read a complete line into the string variable specified from the file previously opened as #fnbr. 

 CLOSE #fnbr [,#fnbr] … 
Close the file(s) previously opened with the file number ‘#fnbr’. 

Programs can be loaded from or saved to the SD card using two commands. 

 LOAD fname$ [, R] 
Load a BASIC program from the SD Card.  The optional suffix ",R" will cause the program to be run after 
it has been loaded. 

 SAVE fname$ 
Save the current program to the SD card. 

Load and Save Image 

Images can be loaded from or saved to the SD card using two commands. 

 LOAD IMAGE fname$ [, startx, starty] 
Load a BMP file and display it on the LCD screen at startx, starty. (these default to the top left corner of the 
display if not specified). 



Page 82             Armmite F4 User Manual Page 82 

 SAVE IMAGE fname$ [, x, y, w, h] 
Save the current LCD screen image as a BMP file. This will save the image as a 24-bit true colour BMP file 
(the extension .BMP) will be added if an extension is not supplied. [x, y, w, h] define the area to be saved. 
If omitted, the entire screen is saved. 

Load and Save Data 

Memory content can be loaded from or saved to the SD card using two commands. 

 SAVE DATA fname$, address, size 
Save memory size bytes starting memory  address  to filename$ as binary data. 

 LOAD DATA fname$, address 
Load binary data into the memory at address 

File and Directory Management 

Basic file and directory manipulation can be done from within a BASIC program. 

 FILES [wildcard] 
Search the current directory and list the files/directories found. 

 KILL fname$ 
Delete a file in the current directory. 

 NAME fnameold$ AS fnamenew$ 
Renames a file in the current directory. 

 MKDIR dname$ 
Make a sub directory in the current directory. 

 CHDIR dname$ 
Change into to the directory $dname.  $dname can also be ".." (dot dot) for up one directory or "\" for the 
root directory. 

 RMDIR dir$ 
Remove, or delete, the directory ‘dir$’ on the SD card. 

 SEEK #fnbr, pos 
Will position the read/write pointer in a file that has been opened for RANDOM access to the 'pos' byte. 

Also there are a number of functions that support the above commands. 

 INPUT$(nbr, #fnbr) 
Will return a string composed of ‘nbr’ characters read from a file previously opened for INPUT with the 
file number ‘#fnbr’.  If less than ‘nbr’ characters are available the function will return with what it has 
(including an empty string if no characters are available). 

 DIR$( fspec, type ) 
Will search an SD card for files and return the names of entries found. 

 EOF( #fnbr ) 
Will return true if the file previously opened for INPUT with the file number ‘#fnbr’ is positioned at the 
end of the file. 

 LOC( #fnbr ) 
For a file opened as RANDOM this will return the current position of the read/write pointer in the file. 

 LOF( #fnbr ) 
Will return the current length of the file in bytes. 



Page 83             Armmite F4 User Manual Page 83 

XModem Transfer 

In addition to the standard method of XModem transfer which copies to or from the program memory the 
Armmite F4 can also copy to and from a file on the SD card.  The syntax is: 

XMODEM SEND filename$ 
or 

XMODEM RECEIVE filename$ 

Where ‘filename$’ is the file to save or send.  As is common throughout MMBasic ‘filename$’ can be a string 
expression, variable or constant.  If it is a constant the string must be quoted (eg, XMODEM SEND "PRBAS") 
In the case of receiving a file, any file on the SD card with the same name will be automatically overwritten. 

Example of Sequential I/O 

In the example below a file is created and two lines are written to the file (using the PRINT command).  The 
file is then closed. 

OPEN "fox.txt" FOR OUTPUT AS #1 
PRINT #1, "The quick brown fox" 
PRINT #1, "jumps over the lazy dog" 
CLOSE #1 

You can read the contents of the file using the LINE INPUT command.  For example: 

OPEN "fox.txt" FOR INPUT AS #1 
LINE INPUT #1,a$ 
LINE INPUT #1,b$ 
CLOSE #1 

LINE INPUT reads one line at a time so the variable a$ will contain the text "The quick brown fox" and b$ 
will contain "jumps over the lazy dog". 

Another way of reading from a file is to use the INPUT$() function.  This will read a specified number of 
characters.  For example: 

OPEN "fox.txt" FOR INPUT AS #1 
ta$ = INPUT$(12, #1) 
tb$ = INPUT$(3, #1) 
CLOSE #1 

The first INPUT$() will read 12 characters and the second three characters.  So the variable ta$ will contain 
"The quick br" and the variable tb$ will contain "own". 

Files normally contain just text and the print command will convert numbers to text.  So in the following 
example the first line will contain the line "123" and the second "56789". 

nbr1 = 123 : nbr2 = 56789 
OPEN "numbers.txt" FOR OUTPUT AS #1 
PRINT #1, nbr1 
PRINT #1, nbr2 
CLOSE #1 

Again you can read the contents of the file using the LINE INPUT command but then you would need to 
convert the text to a number using VAL().  For example: 

OPEN "numbers.txt" FOR INPUT AS #1 
LINE INPUT #1, a$ 
LINE INPUT #1, b$ 
CLOSE #1 
x = VAL(a$) : y = VAL(b$) 

Following this the variable x would have the value 123 and y the value 56789. 



Page 84             Armmite F4 User Manual Page 84 

Random File I/O 

For random access the file should be opened with the keyword RANDOM.  For example: 

OPEN "filename" FOR RANDOM AS #1 

To seek to a record within the file you would use the SEEK command which will position the read/write 
pointer to a specific byte.  The first byte in a file is numbered one so, for example, the fifth record in a file that 
uses 64 byte records would start at byte 257.  In that case you would use the following to point to it: 

SEEK #1, 257 

When reading from a random access file the INPUT$() function should be used as this will read a fixed number 
of bytes (ie, a complete record) from the file.  For example, to read a record of 64 bytes you would use: 

dat$ = INPUT$(64, #1) 

When writing to the file a fixed record size should be used and this can be easily accomplished by adding 
sufficient padding characters (normally spaces) to the data to be written.  For example: 

PRINT #1, dat$ + SPACE$(64 – LEN(dat$); 

The SPACE$() function is used to add enough spaces to ensure that the data written is an exact length (64bytes 
in this example).  The semicolon at the end of the print command suppresses the addition of the carriage return 
and line feed characters which would make the record longer than intended. 

Two other functions can help when using random file access.  The LOC()  function will return the current  byte 
position of the read/write pointer and the LOF() function will return the total length of the file in bytes. 

The following program demonstrates random file access.  Using it you can append to the file (to add some data 
in the first place) then read/write records using random record numbers.  The first record in the file is record 
number 1, the second is 2, etc.   

RecLen = 64 
OPEN "test.dat" FOR RANDOM AS #1 
DO 
 abort: PRINT 
 PRINT "Number of records in the file =" LOF(#1)/RecLen 
 INPUT "Command (r = read,w = write, a = append, q = quit): ", cmd$ 
 IF cmd$ = "q" THEN CLOSE #1 : END 
 IF cmd$ = "a" THEN 
  SEEK #1, LOF(#1) + 1 
 ELSE 
  INPUT "Record Number: ", nbr 
  IF nbr < 1 or nbr > LOF(#1)/RecLen THEN PRINT "Invalid record" : GOTO abort 
  SEEK #1, RecLen * (nbr - 1) + 1 
 ENDIF 
 IF cmd$ = "r" THEN 
  PRINT "The record = " INPUT$(RecLen, #1) 
 ELSE 
  LINE INPUT "Enter the data to be written: ", dat$ 
  PRINT #1,dat$ + SPACE$(RecLen - LEN(dat$)); 
 ENDIF 
LOOP 

Random access can also be used on a normal text file.  For example, this will print out a file backwards: 
OPEN "file.txt" FOR RANDOM AS #1 
FOR i = LOF(#1) TO 1 STEP -1 
 SEEK #1, i 
 PRINT INPUT$(1, #1); 
NEXT i 
CLOSE #1 
 
 
 



Page 85             Armmite F4 User Manual Page 85 

W25Q16 Flash Support 
 

The Armmite STM32F407VET6 board has a 2Meg W25Q16 SPI Flash chip on board. 64K of this is used as a 
scratch pad to support the library command. A further 4K is reserved to allow backup of the data saved to the 
battery backed ram used by VAR SAVE. VAR FSAVE will make a backup copy to the W25Q16 flash. 

The rest is available to the user by accessing with SPI commands. See Appendix E  W25Q Windbond 

 



Page 86             Armmite F4 User Manual Page 86 

Display Panels 
The ArmmiteF4 supports a number of 16 bit parallel displays as well as a number of SPI displays. 

16 Bit Parallel Interface LCD Panels 
The Armmite F4 supports a number of LCD Panels with 16 bit parallel interface. These are preferred due to 
their increased speed, and some are not much difference in price to the SPI screens. The ILI9341_P16 that can 
be ordered with the STM32F407VET6 plugs directly into the FSMC connector without any need for additional 
wiring. 
The supported panels are: 

 ILI9341 P16  
Available with a matching connector, but also available with a 40pin connector which needs an adaptor. The 
Armmite F4 initially starts with this controller and its touch panel fully configured by default. 
OPTION LCDPANEL DISABLE is initially required before setting up an alternate display. 

 SSD1963 4” 5” 7” 8” 9”  
 These are high quality, have been available long term and need an adaptor board. 

 IPS_4_16 800*480 IPS Displays.  
They are cheaper than the SSD1963 and can be a good choice. There are two types of this display which look 
almost identical. They have either the OTM8009A or NT35510 chip. These are both handled as the IPS_4_16 
display type and the driver will determine which one is in use and use the appropriate code. They have a 34 pin 
connector and require an adaptor. 

 ILI9486 P16 
Another option with 480*320 resolution, and the 34 pin connector with an adaptor required. 
 

Pin out for FSMC connector. 
The pinout below is for the FMSC LCDPANEL connection at the end of the board. This is viewed from the top 
of the board. The pin numbers and function as shown below. You will need this if you want to make an adaptor 
board. 
PEN-IRQ is the same as T-IRQ. The LCD-BL pin is controlled by the BACKLIGHT command.  The T-CLK, 
MOSI and MISO pins are SPI2 and can be used to connect to an SPI LCD Panel. Touch uses the same SPI2, 
PEN-IRQ and T-CS.  
 
  

 
          FSMC LCD Connector – Top View 

 
 



Page 87             Armmite F4 User Manual Page 87 

Pins not available to MMBasic or SPI LCD Panels. 
The B0-B15 data pins, DC, CS, RD, WR, RST pins can only be used by the 16bit parallel LCD Panels. They 
cannot be used from MMBasic and cannot be allocated for use by SPI LCD Panels. 
SPI LCD panels need RST, D/C and CS pins, but you need to allocate them from the available DIN-DOUT 
pins, you cannot use any of these. 

 

SSD1963 Power Considerations 
For 4.3", 5", 7" versions make sure the backlight control jumper on the display is set to 1963_PWM. You can 
then leave the LED_A pin disconnected but it is benign if it is wired to 3.3V or the LCD_BL pin on the 
STM32F407 (PB1) 
For 4.3" and 5" displays only the 3.3V supply is needed. 
  
For 7" displays the 5V pin on the display should be connected. I found that my STM32F407 board was able to 
supply adequate power but this will depend on the USB port on the computer used. The USB enumeration 
code now asks for 500mA which is adequate for a 7" display (400mA) + the STM32F407 board itself. 
  
For 9" displays using the Ritech adapter I needed to use an external 5V supply connected to the 5V pin. 
The 9” display uses the same driver as the 8” panel. i.e. 
OPTION LCDPANEL SSD1963_8_16 , orientation 

Backlight Control – BACKLIGHT (0-100) 
The backlight brightness is set based on the Option DefaultBrightness setting. It is defaulted to 50%. The value 
stored in Option DefaultBrightness is changed by an optional parameter on the BACKLIGHT command. The 
Option DefaultBrightness will show in Option List if any display is configured and is not at the default 50%. 
The brightness of the backlight on LCD panels can be controlled with the BACKLIGHT command:  

BACKLIGHT percent [,S|,R] 

Where 'percent' is the degree of brightness ranging from 0 (fully off) to 100 (full brightness).  This can be 
changed as often as required and makes a huge difference to the power requirements of the display.  For 
example, a brightness of 50% will halve the current consumption (compared to 100%) while only making a 
small difference to the perceived visual brightness. The SSD1963 backlight jumpers should be set to use its 
own PWM as detailed below. The backlight command optional parameter which will cause the default setting 
(i.e. OPTION DefaultBrightness) to be also updated to the new value in the saved Options. BACKLIGHT 50,S 
will cause the default brightness to be set to 50% and this will be used when the device is restarted or powered 
on. BACKLIGHT 50,R will also set the default brightness to 50%, it also signals that the LCD Panel requires 
the signal to be sent a in reverse order in order for it to respond as 0 (fully off) and 100 (fully on). The Default 
Brightness is by default set at 50%. This ensures that the screen is a least visible if you are not sure which type 
you have.  
The BACKLIGHT command supports other LCD panels supported on the Armmite F4 by controlling a PWM 
signal on the BL connector, with brightness ranging from 0 (fully off) to 100 (full brightness) 
This may be reversed depending on how the driver circuit for the LED is implemented. 
 

 
Typical LED driver built into displays gives 
brightness as 0(off)-100(fully on).  

 
Simple driver to allow  SPI ILI9341 LED-A pin to be 
driven by Backlight command. 0(off) to 100(fully on). 
VCC is 3.3V (SPI ILI9341 has no built in driver) 



Page 88             Armmite F4 User Manual Page 88 

The SSD1963 based LCD panels have three pairs of 
solder pads on the PCB which are grouped under the 
heading "Backlight Control" as illustrated on the right.  
Normally the pair marked "LED-A" are shorted together 
with a zero ohm resistor and this allows control of the 
backlight's brightness with a PWM (pulse width 
modulated) signal on the LED-A pin of the display 
panel's main connector.   

The Armmite F4 expects the SSD1963 controller to be 
set to use the SSD1963 for brightness control. The zero 
ohm resistor should be removed from the pair marked 
"LED-A" and used to short the nearby pair of solder 
pads marked "1963-PWM".  The Armmite F4 can then control the brightness via the SSD1963 controller. 

SPI Based LCD Panels 
The standard Armmite F4 includes support for colour LCD display panels using the ILI9341 controller and an SPI 
interface.  These have a 240x320 pixel colour TFT display, come in a variety of sizes (2.2”, 2.4" and 2.8”) and are 
low cost (typically US$8).    
On eBay you can find suitable displays by searching for the controller name (ILI9341). 
There are many similar displays on the market however some have subtle differences that could prevent them 
from working with the Armmite.  MMBasic was tested with the displays illustrated below so, if you wish to 
guarantee success make sure your display matches the photographs and the specifications listed below. 
The ILI9341 based displays use an SPI interface and have the 
following basic specifications: 

 A 2.2, 2.4 or 2.8 inch display 
 Resolution of 240 x 320 pixels and a colour depth of 262K/65K 
 A ILI9341 controller with a SPI serial interface 

The display illustrated also has a touch sensitive facility which is fully 
supported by MMBasic.  There are versions of this display without the 
touch controller (the 16-pin IC on the bottom right of the PCB) but there 
is not much point in purchasing these as the price difference is small. 

Connecting SPI Based LCD Panels 
The SPI based display controllers share the SPI2 interface with the touch controller (if present).  

The following table lists the connections required between the LCD display board and the Armmite 

ILI9341 
Display Description Connector Pin 

T_IRQ Touch Interrupt FSMC 27 (PB12) 
T_DO Touch Data Out (MISO) FSMC 26 
T_DIN Touch Data In (MOSI) FSMC 25 
T_CS Touch Chip Select FSMC 24 (PC5) 

T_CLK Touch SPI Clock FSMC 23 
SDO (MISO) Display Data Out (MISO) FSMC 26 

LED 

The FSMC LCD-BL can be used to drive the backlight on thse displays. LCD-BL can 
only drive at logic levels. If the LCD panel does not have a driver transistor built in 
(none of the known SPI LCDs do), you cannot connect to the FSMC LCD-BL pin, 
unless you provide a driving circuit. If you can drive the backlight with logic level, 
then the BACKLIGHT command and the LCD-BL pin can be used to control the 
LCD’s backlight. Otherwise the LCD backlight should be connected to VCC via a 
suitable resistor to give a satisfactory backlight. 

SCK Display SPI Clock FSMC 23 
SDI 

(MOSI) Display Data In (MOSI) FSMC 25 



Page 89             Armmite F4 User Manual Page 89 

ILI9341 
Display Description Connector Pin 

D/C Display Data/Command Control Configurable 
RESET Display Reset (when pulled low) Configurable 

CS Display Chip Select Configurable - Optional if 
Touch not used. 

GND Ground 

VCC 
VCC can be either 5V or 3.3V If connected to 3.3v J1 on the back of the LCD can be 
shorted to bypass the 5v to 3.3v regulator..supply (the controller draws less than 10 

mA) 

Note: Be careful to ground yourself when handling the display as the ILI9341 controller is sensitive to static 
discharge and can be easily destroyed. 

Where a Armmite connection is listed as "configurable" the specific pin should be specified with the OPTION 
LCDPANEL or OPTION TOUCH commands (see below). 

The SPI LCDs generally expose the LED-A which is the Anode to the backlight LEDs. The backlight power (the 
LED connection) can be supplied from the main 5V supply via a current limiting resistor.  A typical value for this 
resistor is 18Ω which will result in a LED current of about 63 mA.  The value of this resistor can be varied to 
reduce the power consumption or to provide a brighter display. If a suitable driver circuit as shown above in the 
Backlight Control section is used then the backlight can be controlled via the BACKLIGHT command. 

 

Care must be taken with display panels that share the SPI port between a number of devices (display 
controller, touch, etc.). In this case all the Chip Select signals must be configured in MMBasic or 
disabled by a permanent connection to 3.3V.  If this is not done any unconnected Chip Select pins will 
float causing the wrong controller to respond to commands on the SPI bus. 

Supported SPI Panels 
 ILI9481 SPI based 480*320 SPI touch controller 
 ILI9488 SPI based 480*320 SPI touch controller 
 ILI9341  SPI based 320*240 2.2", 2.4" and 2.8" panels using the ILI9341 controller 
 ILI9341_I  SPI based 320*240 2.2", 2.4" and 2.8" panel with display Inverted 
 ST7735 SPI based 160*80 TFT display 
 GC9A01 SPI based round 240*240 IPS display 
 ST7789 SPI based 240*240 IPS display 
 ST7735              SPI based 160*128 display 

 

26 24 22 20 18 16 14 12 10 8 6 4 2
T-CS CS RST DC GND 5V

CLK MISO MOSI T- IRQ
25 23 21 19 17 15 13 11 9 7 5 3 1

ILI9481 Viewed from underneath

 

2 4 6 8 10 12 14 16 18 20 22 24 26
5V GND DC RST CS T-CS

T- IRQ MOSI MISO CLK
1 3 5 7 9 11 13 15 17 19 21 23 25

Socket to accept the ILI9481 LCD viewed from top

 
 

 



Page 90             Armmite F4 User Manual Page 90 

 

The ILI9488 display may have issues when the LCD SDO(MISO) pin is connected.  (The LCD SDO 
does NOT tristate when CS is high and interferes with the Touch T_DO). It is only needed if BLIT 
or transparent text are used, otherwise it can be left disconnected. Touch shares the SPI2 port with 
the LCD SDO. Connecting the LCD SDO pin via a 680ohm resistor has been known to allow both 
to work together. 

Configuring MMBasic for SPI Displays 
To use the SPI displays MMBasic must be configured using the OPTION LCDPANEL command which is 
normally entered at the command prompt.  Every time the Armmite is restarted MMBasic will automatically 
initialise the display.  This command can also be embedded in a program with certain conditions – see the section  
Running Armmite F4 without Backup Battery for more details.   
The syntax is: 

OPTION LCDPANEL controller, orientation, D/C pin, reset pin [,CS pin] 

Where: 
'controller' can be either ILI9341, ILI9481, ILI9488 or ST7789   
'orientation' can be LANDSCAPE, PORTRAIT, RLANDSCAPE or RPORTRAIT.  These can be abbreviated to 
L, P, RL or RP.  The R prefix indicates the reverse or "upside down" orientation. 
'D/C pin' and 'reset pin' are the I/O pins to be used for these functions.  Any free pin can be used. 
'CS pin' can also be any free I/O pin and is optional if a touch controller is not used. This parameter can be left off 
the command and the CS pin on the LCD display wired permanently to ground.  If the touch controller is used this 
pin must then be specified and connected to an I/O pin. 
e.g. 

OPTION LCDPANEL ILI9341, LANDSCAPE, PE0, PD6, PC4 

In some circumstances it may be necessary to interrupt power to the LCD panel while the Armmite is running 
(e.g., to save battery power) and in that case the GUI RESET LCDPANEL command can be used to reinitialise 
the display the same as in power up. 
If the LCD panel is no longer required, the command OPTION LCDPANEL DISABLE can be used which will 
return the I/O pins for general use,it will also disable the touch controller and return its I/O pins. 
To test the display, you can enter the command GUI TEST LCDPANEL.  You should see an animated display of 
colour circles being rapidly drawn on top of each other.  Press the space key on the console’s keyboard to stop the 
test. 
Important: The above test may not work if the display has a touch controller and the touch controller has not been 
configured (i.e., the touch Chip Select pin is floating).  In this case configure the touch controller (see below) and 
then retry GUI TEST LCDPANEL. 
To verify the configuration, you can use the command OPTION LIST to list all options that have been set 
including the configuration of the LCD panel. 
 
 

User Defined LCD Panels in MMBasic 
It is possible to write drivers for LCD Panels in MMBasic. The link below details these drivers and has an 
example for and I2C SSD1306 128*32 display panel that work for the Armmite F4. 
OPTION LCDPANEL USER, 128,32 
https://www.thebackshed.com/forum/ViewTopic.php?TID=10159&PID=140808#140808 
 

Loadable Driver LCD Panels as CSUBs 
With the introduction of CSubs is should now be possible to write loadable drivers for the Armmite F4. 
There are none written at present. The link below points to a table maintained on the Fruit of the Shed wiki 
page that is usually kept up to date with the drivers available for the Micromite and Armmites. 
 
http://fruitoftheshed.com/MMBasic.LCD%20Panel%20list.ashx 
 

https://www.thebackshed.com/forum/ViewTopic.php?TID=10159&PID=140808#140808
http://fruitoftheshed.com/MMBasic.LCD Panel list.ashx


Page 91             Armmite F4 User Manual Page 91 

Touch Support 
Many LCD panels are supplied with a resistive touch sensitive panel and associated controller chip.  To use the 
touch feature in MMBasic the touch controller must first be connected to the Armmite F4 (see the above 
chapter for the details) and then configured (see below). 
When Touch is enabled SPI2 is also enabled, so it reserves the SPI2 pins. The touch chip on the LCD need to 
be queried using SPI2 to find out where the touch occurred. T_IRQ will only indicate a touch has occured. 
Disabling Touch will disable SPI2 and free up the pins unless its an SPI type LCD panel which also needs the 
SPI2. 

Configuring Touch 
To use the touch facility MMBasic must be configured using the OPTION TOUCH command which is normally 
entered at the command prompt.  This should be done after the LCD panel has been configured.  Every time the 
Armmite is restarted MMBasic will automatically initialise the touch controller.  This command can also be 
embedded in a program with certain conditions – see the section  Running Armmite F4 without Backup Battery 
The syntax is: 

OPTION TOUCH P12, PC5[,click] 

The optional click pin will cause an audible click when a touch is detected if a piezo buzzer is connected between 
it and GND. Command GUI BEEP period will cause a beep of duration period msec.  
If the touch facility is no longer required use the command OPTION TOUCH DISABLE to disable the touch 
feature and return the I/O pins for general use (the 'T_CS pin' should be held high to disable the controller). 
 
 

Calibrating the Touch Screen 
Before the touch facility can be used it must be calibrated using the GUI CALIBRATE command. 
This command will present a target in the top left corner of the screen.  Using a pointy but blunt object such as 
a toothpick press exactly on the centre of the target and hold it down for at least a second.  MMBasic will 
record this location and then continue the calibration by sequentially displaying the target in the other three 
corners of the screen for touch and calibration. 
The calibration routine may warn that the calibration was not accurate.  This is just a warning and you can still 
use the touch feature if you wish but it would be better to repeat the calibration using more care. 
Following calibration, you can test the touch facility using the GUI TEST TOUCH command.  This command 
will blank the screen and wait for a touch.  When the screen is touched a white dot will be placed on the display 
marking the position on the screen.  If the calibration was carried out successfully the dot should be displayed 
exactly under the location of the stylus on the screen. 
To exit the test routine, you can press the space bar on the console’s keyboard. 
 

 

MMBasic will report a touch controller hardware failure during calibration if it gets identical 
values from two different touch points.  This is reported after the second calibration point is 
displayed and you touch it. You cannot assume that the first touch was correct. Its saying that are 
both the same and probably both incorrect.  
 

 

Touch Functions 
To detect if and where the screen is touched you can use the following functions in a BASIC program: 

 TOUCH(X) 
Returns the X coordinate of the currently touched location. 

 TOUCH(Y) 
Returns the Y coordinate of the currently touched location. 

Both functions return -1 if the screen is not being touched.  See the Advanced Graphics sections for more 
information on using touch. 
 



Page 92             Armmite F4 User Manual Page 92 

The GUI BEEP Command 
The Piezo buzzer specified in the OPTION TOUCH command can also be driven by a BASIC program using   
the command:   
         GUI BEEP msec   
Where 'msec' is the number of milliseconds that the beeper should be driven.  A time of 3ms produces a click   
while 100ms produces a short beep.   

Touch Interrupts 
The following command will enable the touch interrupt. A separate subroutine can be called for each of the 
touch down and touch up events. 

‘Set up the interrupt 
GUI INTERRUPT IntTouchDown, IntTouchUp 
 

‘These subroutines is called each time there is a touch on the LCDPanel 

SUB IntTouchDown 
  PRINT TOUCH(X), TOUCH(Y) 

END SUB 

 

SUB IntTouchUp 
  PRINT “you took your finger off” 

END SUB 

 
Specifying the number zero (single digit) as the argument will cancel both of these interrupts.  i.e.: 
   GUI INTERRUPT 0 
See the Advanced Graphics sections for more information on using touch and it interaction with the graphic 
controls.  
 



Page 93             Armmite F4 User Manual Page 93 

PS2 Keyboard and LCDPANEL as Console 
The ArmiteF4 can be used as a stand alone computer if a PS2 keyboard is attached and the LCDPANEL is used 
as the main console. 

LCD Display as the Console Output 
A PS2 keyboard can be used on its own as an alternative input method but it works particularly well when the 
LCD display panel is used as the console output. The LCD must be in the landscape or reverse landscape 
orientation and it must be first configured using OPTION LCDPANEL. Only the 16bit parallel LCD displays 
are supported for use as a console. SPI screens are too slow when it comes to scrolling the screen. 

To enable the output to the LCD panel you should use the following command: 
OPTION LCDPANEL CONSOLE [font [, fc [, bc [, blight]]] 

'font' is the default font, 'fc' is the default foreground colour, 'bc' is the default background colour and 'blight' is the 
default backlight brightness (2 to 100). These settings are saved in flash and are used to configure MMBasic at 
power up.  They are all optional and default to font 2, white, black and the current brightness. (50% by default).   
Colour coding in the editor (see below) is also turned on by this command (OPTION COLOURCODE OFF will 
turn it off again).  To disable using the LCD panel as the console the command is  
OPTION LCDPANEL NOCONSOLE. 

Used with a PS2 keyboard this option turns the Armmite F4 into a selfcontained computer with its own 
keyboard and display.  Rather like a modern version of the Maximite (see http://geoffg.net/maximite.html). 

Using LCDPANEL as the Console 
When you are using the LCD Panel as the console the LCD Panel is providing a dual role as your terminal and 
as your LCD graphical display. When a program is running any print commands as well as any graphic 
commands will both write to the display. The FONT command does not change the Prompt Font when 
OPTION LCDPANEL CONSOLE is enabled. Use OPTION LCDPANEL CONSOLE font to change the font 
used by the console. The FONT command can be used to change the Font used by default within a program but 
at the LCDPanel Console is only effective for the current command line as the font reverts to the Prompt Font 
used by the console as soon as the command completes. e.g. 

FONT 4:TEXT 10,10,”HELLO”  ‘on a single line will use FONT 4 

However as below won’t use FONT 4 unless it is already used as the Prompt Font.. 

FONT 4                            ‘When this command completes the font reverts to the Prompt Font of the console 

TEXT 10,10,”HELLO”    ‘Uses the current  Prompt Font set for the LCDPanel Console 

PS2 Keyboard 
The connection diagram for the keyboard is shown on the below. The Armmite enables weak pullups on the 
clock and data lines so the 4.7 K resistors shown in the diagram are optional and for most keyboards there will 
be no ill effects if they are omitted.  Refer to the pinout diagrams in section Pin and Connector Capabilities to 
see the pins used. 

If you don’t have a PS2 keyboard they may not be as hard to come by as you may think. See this thread on the 
backshed forum. Many wired keyboards still support PS2 even though they have a USB connector and operate 
as a USB keyboard. If you find one that works as PS2 and is currently available, please add to the thread. 

https://www.thebackshed.com/forum/ViewTopic.php?FID=16&TID=13440 

PS2 Connection for Armmite F4 
The PS2 connector can be bypassed, just plug the USB 
connector on the keyboard into a female usb breakout 
board and run D+ to the F4 keyboard clock (PA15, pin 77) 
and D- to keyboard data (PD3, pin 84), set OPTION 
KEYBOARD US and test. Connect 5V and GND as well. 

If it doesn’t work it is worth swapping D+ and D- over and 
trying to add the 4.7K resistors as trouble shooting steps, 
but some USB keyboards just will no longer support PS2. 

 

http://geoffg.net/maximite.html
https://www.thebackshed.com/forum/ViewTopic.php?FID=16&TID=13440


Page 94             Armmite F4 User Manual Page 94 

 

 

Before the keyboard can be used it must first be enabled by specifying the language of the keyboard:  
OPTION KEYBOARD language 

Where ‘language’ is a two-character code such as US for the standard keyboard used in the USA, Australia and 
New Zealand.  Other keyboard layouts that can be specified are United Kingdom (UK), French (FR), German 
(GR), Belgium (BE), Italian (IT) or Spanish (ES).  Note that the non US layouts map some of the special keys 
present on these keyboards but the corresponding special character will not display as they are not part the 
standard Armmite F4 fonts (another character will be used instead). 

This command configures the I/O pins dedicated to the keyboard and initialises it for use.  As with the similar 
commands for TOUCH, etc. this option will be saved in flash memory and automatically applied on power up.  
If you want to remove the keyboard you can do this with the OPTION KEYBOARD DISABLE command. 



Page 95             Armmite F4 User Manual Page 95 

Using an LCD Panel 
There are ten basic drawing commands that you can use within MMBasic to draw images on the LCDPANEL  

Screen Coordinates 
All screen coordinates and measurements on the screen are done in terms of pixels with the X coordinate being 
the horizontal position and Y the vertical position.  The top left corner of the screen has the coordinates X = 0 
and Y = 0 and the values increase as you move down and to the right of the screen.   

Read Only Variables 
In the Armmite F4 there are six read only variables which provide useful information about the display 
currently connected.   

 MM. HRES 
Returns the width of the display (the X axis) in pixels. 

 MM. VRES 
Returns the height of the display (the Y axis) in pixels. 

 MM.FONTHEIGHT 
Returns the height of the current font (in pixels).  All characters in a font have the same height. 

 MM.FONTWIDTH 
Returns the width of a character in the current font (in pixels).  All characters in a font have the same 
width. 

 MM.HPOS 
Returns the X coordinate of the text cursor (i.e., the horizontal location (in pixels) of where the next 
character will be printed on the LCD panel) 

 MM.VPOS 
Returns the Y coordinate of the text cursor (i.e., the vertical location (in pixels) of where the next 
character will be printed on the LCD panel) 

Drawing Commands 
The drawing commands have optional parameters.  You can completely leave these off the end of a command 
or you can use two commas in sequence to indicate a missing parameter.  For example, the fifth parameter of 
the LINE command is optional so you can use this format:  

 LINE 0, 0, 100, 100, , rgb(red) 

Optional parameters are indicated below by italics, for example: font. 
In the following commands C is the drawing colour and defaults to the current foreground colour.  FILL is the 
fill colour which defaults to -1 which indicates that no fill is to be used. 
The drawing commands are: 

 CLS C 
Clears the screen to the colour C.  If C is not specified, the current default background colour will be used. 

 PIXEL X, Y, C 
Illuminates a pixel.  If C is not specified, the current default foreground colour will be used. 

 LINE X1, Y1, X2, Y2, LW, C 
Draws a line starting at X1 and Y1 and ending at X2 and Y2. 
LW is the line’s width and is only valid for horizontal or vertical lines.  It defaults to 1 if not specified or is 
changed to 1 if the line is a diagonal. 

 BOX X, Y, W, H, LW, C, FILL 
Draws a box starting at X and Y which is W pixels wide and H pixels high. 
LW is the width of the sides of the box and can be zero.  It defaults to 1. 

 RBOX X, Y, W, H, R, C, FILL 
Draws a box with rounded corners starting at X and Y which is W pixels wide and H pixels high. 
R is the radius of the corners of the box.  It defaults to 10. 



Page 96             Armmite F4 User Manual Page 96 

 TRIANGLE X1, Y1, X2, Y2, X3, Y3, C, FILL 
Draws a triangle with the corners at X1, Y1 and X2, Y2 and X3, Y3.  C is the colour of the triangle and 
FILL is the fill colour.  FILL can be omitted or be -1 for no fill. 

 CIRCLE X, Y, R, LW, A, C, FILL 
Draws a circle with X and Y as the centre and a radius R.   LW is the width of the line used for the 
circumference and can be zero (defaults to 1).  A is the aspect ratio which is a floating point number and 
defaults to 1.  For example, an aspect of 0.5 will draw an oval where the width is half the height. 

 ARC x, y, r1, r2, a1, a2, c  
Draws an arc with the centre at x and y, r1 and r2 are the inner and outer radius defining the thickness of the 
arc (if they are the same the arc will be one pixel thick),  a1 and a2 are the start and end angles in degrees 
and c is the colour. 

 POLYGON n, xarray%(), yarray%(), C , FILL  
Draws an outline or filled polygon defined by the x, y coordinate pairs in xarray%() and yarray%().  'n' is 
the number of points to use in drawing the polygon.  If the last xy-coordinate pair is not the same as the first 
the firmware will automatically create an additional xy-coordinate pair to complete the polygon. 

 TEXT X, Y, STRING, ALIGNMENT, FONT, SCALE, C, BC 
Displays a string starting at X and Y.  ALIGNMENT is 0, 1 or 2 characters (a string expression or variable 
is also allowed) where the first letter is the horizontal alignment around X and can be L, C or R for LEFT, 
CENTER or RIGHT aligned text. The second letter is the vertical alignment around Y and can be T, M or B 
for TOP, MIDDLE or BOTTOM aligned text. The third character is orientation (N,V,I,U.D) . The default 
alignment is left/top.  FONT and SCALE are optional and default to that set by the FONT command.  C is 
the drawing colour and BC is the background colour.  They are optional and default to that set by the 
COLOUR command.  
N for normal orientation, V for vertical text with each character under the previous running from top to 
bottom, I the text will be inverted (i.e., upside down), U the text will be rotated counter clockwise by 90º,        
D the text will be rotated clockwise by 90º 

 
 

Colours 
Colour is specified as a true colour 24 bit number where the top eight bits represent the intensity of the red 
colour, the middle eight bits the green intensity and the bottom eight bits the blue.  For example, the colour red 
is &HFF0000 and yellow is &HFFFF00.  An easier way to generate a colour value is to use the RGB() function 
which has the form:    RGB(red, green, blue) 
A value of zero for a colour represents black and 255 represents full intensity.   
The RGB() function also supports a shortcut where you can specify common colours by naming them.  For 
example, RGB(red) or RGB(cyan).  The colours that can be named using the shortcut form are white, black, 
blue, green, cyan, red, magenta, yellow, brown and gray. 
Because the Armmite F4 uses double precision floating point it can store the 24 bit number representing colour 
(i.e., returned by the RGB() function) in either a floating point variable or an integer variable. 
 
The MMBasic LCD Panel drivers will automatically translate all colours to RGB565 format. i.e. 65K colours 
when they are output to the LCD panel. See below for details. 
 
The default colour for commands that require a colour parameter can be set with the COLOUR command.  This 
is handy if your program uses a consistent colour scheme, you can then set the defaults and use the short 
version of the drawing commands throughout your program (the USA spelling COLOR is also accepted). 
The COLOUR command takes the format:  

COLOUR foreground-colour, background-colour 

 

RGB888 Vs RGB565 with Pixel() 
MMBasic uses RGB888 internally. Colours are stored as 24 bits, 8 bits for each of Red, Green and Blue. The 
LCD displays on the Armmite F4 are all set to use RGB565. The lower 3 bits for Red and Blue are discarded 



Page 97             Armmite F4 User Manual Page 97 

and the lower 2 bits for Green are discarded. The LCD drivers take care of all this and is rarely a concern. The 
only time it likely to be noticed is when using the PIXEL() function. When reading the colour of a Pixel you 
may not get what you expect if you compare the result with the RGB888 colour initially sent to the LCD via the 
PIXEL command or some graphic command. The RGB888 is modified to RGB565 before it is sent to the LCD 
and only the RGB565 is read back. When converted back to RGB888 the lower bits are set to 0. The original 
colour would need to be ANDed with &HF8FCF8 to match the returned value. 
 

Fonts 
The Armmite F4 has seven built in fonts plus it can use embedded fonts to a maximum of 16 fonts.   
There are seven built in fonts.  These are: 

Font 
Number 

Size 
(width x height) 

Character 
Set Description 

1 8 x 13 All 95 characters A small font where a dense display is required. 
2 12 x 20 All 95 characters General use on 480 x 272 displays 
3 16 x 24 All 95 characters General use on 800 x 480 displays 
4 16 x 24 BOLD All 95 characters A bold version of font #3 

5 10 x 16 
All 95 characters 

plus 7F to FF (hex) 
A font with extended graphics Characters.suitable 
for high resolution displays. 

5 24 x 32 All 95 characters Large font, very clear 

6 32 x 50 0 to 9 plus some symbols Numbers plus decimal point, positive, negative, 
equals, degree and colon symbols.  Very clear. 

7 6 x 8 All 95 ASCII characters A small font useful when low resolutions are used. 
 

Note: The previous 24 x 32 font 5 has been replaced by at 10 x 16 font to save program space. The 24 x 32 
font can be loaded as an embedded font and saved to the Library if required. 

In all fonts (including font #6) the back quote character (60 hex or 96 decimal) has been replaced with the 
degree symbol (º). 

Embedded Fonts 
The Armmite F4 supports embedded fonts. Note that because of the way the fonts are managed you cannot 
redefine fonts 1, 6 or 7. 
These fonts work exactly same as the built in font (i.e., selected using the FONT command or specified in the 
TEXT command).   
The format of an embedded font is: 

DefineFont #Nbr 
    hex [[ hex[…] 
    hex [[ hex[…] 
END DefineFont 

It must start with the keyword "DefineFont" followed by the font number (which may be preceded by an 
optional # character).  Any font number in the range of 2 to 5 and 8 to 16 can be specified and if it is the same 
as a built in font it will replace that font.  The body of the font is a sequence of 8-digit hex words with each 
word separated by one or more spaces or a new line.  The font definition is terminated by an "End DefineFont " 
keyword.  These can be placed anywhere in a program and MMBasic will skip over it. 

This format is the same as that used by the Micromite and additional fonts and information can be found in the 
Embedded Fonts folder in the Micromite and Picomite firmware download.  These fonts cover a wide range of 
character sets including a symbol font (Dingbats) which is handy for creating on screen icons, etc. 

In addition to using embedded fonts a program can dynamically load one font from the SD card using the 
LOAD FONT command.  A program can load many fonts using this method during the course of its execution 
but each new font will overwrite the previously loaded font. 



Page 98             Armmite F4 User Manual Page 98 

The format of fonts loaded using LOAD FONT have a similar format as the embedded fonts described above 
except that no comments or blank lines are allowed, the font number must always be #8, the first word must be 
on a line on its own and the following lines (except the last) must have exactly eight words per line.   
As an example, the following is a tiny (6x4 pixel) font that is useful in the 320x200 display mode: 
DefineFont #8 
60200604 
44000000 00A04040 A0AEAE00 82406C6C EACC2048 00004460 84204424 E4A48044 
00E404A0 00800400 040000E0 00480240 4CE0AAEA 48C24044 C062C2E0 E820E2AA 
EA68E0E2 8048E2E0 EAE0EAEA 0404C0E2 80040400 0E208424 2484000E 4040E280 
4A60E84A CACAA0EA 608868C0 E8C0AACA E8E8E0E8 60EA6880 E4A0EAAA 2A22E044 
A0CAAA40 AEE08888 EEAEA0EA 40AA4AA0 4A80C8CA ECCA60AE C04268A0 AA4044E4 
A4AA60AA A0EEAA40 AAA04AAA 48E24044 E088E8E0 E2004208 004AE022 F0000000 
0C000084 AA8CE06A 608806C0 0660AA26 E42460AC 24AE0640 40A0CA88 22204044 
A0CC8AA4 0EE044C4 AA0CA0EE 40AA04A0 06C8AA0C 880662AA C0C60680 0A60444E 
AE0A60AA E0AE0A40 0AA0440A 6C0E24A6 608464E0 C4400444 006CC024 E0EEEE00 

End DefineFont 

You can convert and create font files to this format using the program FontTweak from:   https://www.c-
com.com.au/MMedit.htm 

Rotated Text 
The Armmite allows you to specify a third character to indicate the rotation of the text.  This character can be 
one of: 
                N   for normal orientation 
                V   for vertical text with each character under the previous running from top to bottom. 
                I    the text will be inverted (i.e., upside down) 
                U   the text will be rotated counter clockwise by 90º 
                D   the text will be rotated clockwise by 90º 
This extra feature applies in the TEXT and GUI CAPTION commands. 
As an example, the following will display the text "LCD Display" vertically down the left hand margin of the 
display panel and centred vertically: 

TEXT 0, 250, "LCD Display", "LMV", 5 
Positioning is relative to the top left corner of the character when viewed normally so inverted 100,100 will 
have the top left pixel of the first character at 100,100 and the text will then be above y=101 and to the left of 
x=101.  Similarly, “R” in the alignment string is viewed from the perspective of the character in whatever 
orientation it is in (not the screen). 

Transparent Text 
If the display is capable of transparent text, the TEXT command will allow the use of -1 for the background 
colour.  This means that the text is drawn over the background with the background image showing through the 
gaps in the letters.  Displays capable of transparent text are any that use the ILI9341 controller, SSD1963 or 
IPS_4_16 controllers.  Using the LOAD command, you can load an image from the SD card. 

BLIT Command 
If the display is capable of transparent text (see the above subheading) programs can also use the BLIT 
command.  This allows a portion of the image currently showing on the display to be copied to a memory 
buffer and later copied back to the display.  This is useful when something needs to be drawn over the 
background and later removed without damaging the image in the background.  Examples include a game 
where a character is moving about in front of a landscape or the moving needle of a photorealistic gauge.  
The available commands are: 

BLIT READ #b, x, y, w, h 
BLIT WRITE #b, x, y, w, h 
BLIT CLOSE #b 

#b is the buffer number in the range of 1 to 64.  x and y are the coordinates of the top left corner and w and h 
are the width and height of the image.  READ will copy the display image to the buffer, WRITE will copy the 
buffer to the display and CLOSE will free up the buffer and reclaim the memory used. 

https://www.c-com.com.au/MMedit.htm
https://www.c-com.com.au/MMedit.htm


Page 99             Armmite F4 User Manual Page 99 

These commands can be used to copy a portion of the display to another location (by copying to a buffer then 
writing somewhere else) but a simpler method is to use an alternative version of the BLIT command as follows: 

BLIT x1, y1, x2, y2, w, h 
This will copy a portion of the image at x1/y1 to the location x2/y2.  w and h specify the width and height of 
the image to be copied.  The source and destination areas can overlap and the BLIT command will perform the 
copy correctly. 
This form of the BLIT command is particularly useful for creating graphs that can scroll horizontally or 
vertically as new data is added. 
The Armmite F4 allows up to 64 buffers, but the limiting factor will be the amount of memory used by the open 
buffers. This is dependent on the size of the buffers required to hold the area you read in. e.g. A 32*32 section 
loaded in to a Blit buffer will use 32*32*3 bytes. i.e. 3K. There is only 114K of memory for all variable etc. 
used by the program, so you need to be aware of this when filling BLIT buffers. 

Load Image 
As previously described in the SD Card Support section the LOAD IMAGE command can be used to load a 
bitmap image from the SD card and display it on the LCD display.  This can be used to draw a logo or add an 
ornate background to the graphics drawn on the display. All types of the BMP format including black and white 
and true colour 24-bit images.  The image can be positioned anywhere on the screen and be of any size (pixels 
that end up being positioned off the screen and will be ignored). 
 

Example 
As an example, the following program will draw a simple digital clock on the LCD. 

CLS 
CONST DBlue = RGB(0, 0, 128)              ' A dark blue colour 
COLOUR RGB(GREEN), RGB(BLACK)             ' Set the default colours 
FONT 6                                    ' Set the default font 

BOX 0, 0, MM.HRes-1, MM.VRes/2, 3, RGB(RED), DBlue 

DO 
  TEXT MM.HRes/2, MM.VRes/4, TIME$, "CM", 6, 1, RGB(CYAN), DBlue 
  TEXT MM.HRes/2, MM.VRes*3/4, DATE$, "CM" 
  IF TOUCH(X) <> -1 THEN END 
LOOP 

The program starts by defining a constant with a value corresponding to a dark blue colour and then sets the 
defaults for the colours and the font.  It then draws a box with red walls and a dark blue interior. Following this 
the program enters a continuous loop where it performs three functions: 

 Displays the current time inside the previously drawn box.  The string is drawn centred both 
horizontally and vertically in the middle of the box.  Note that the TEXT command overrides both the 
default font and colours to set its own parameters. 

 Draws the date centred in the lower half of the screen.  In this case the TEXT command uses the 
default font and colours previously set.   

 Checks for a touch on the screen. This is indicated when TOUCH(X) function returns something other 
than -1. In that cas the program will terminate. 

The screenshot shows the result.   

 
 



Page 100             Armmite F4 User Manual Page 100 

Advanced Graphics 
The Armmite F4 incorporates a suite of advanced graphic controls that respond to touch, these include on 
screen switches, buttons, indicator lights, keyboard, etc.  MMBasic will draw the control and animate it (i.e., a 
switch will appear to depress when touched).   All that the BASIC program needs to do is invoke a single line 
command to specify the basic details of the control. 

 
Each control has a reference number called '#ref' in the description of the control.  By default, this can be any 
number between 1 and 100 and the upper limit can be changed with the OPTION CONTROL command.  The 
reference number is used to identify a control.  For example, a check box can be created thus: 

GUI CHECKBOX #10, "Test", 100, 100, 50, rgb(BLUE) 

And the program can check its value by using its reference number in the CtrlVal() function: 
IF CtrlVal(#10) THEN ... 

The # character is optional but serves to remind the programmer that this is not an ordinary number. 

In the following commands any arguments that are in italic font (eg, Width, Height) are optional and if not 
specified will take the value of the previous command that did specify them.  This means for example, that a 
number of radio buttons with the same size and colour can be specified with only the first button having to list 
all the details.  Note that with the colour specification this is different to the Basic Drawing Commands which 
default to the last COLOUR command.   

All strings used in GUI controls and the MsgBox can display multiple lines by using the tilde character (~) to 
separate each line in the string.  For example, a push button's caption can be "ALARM~TEST" and this would 
be displayed as two lines.   For all controls the font used for the caption will be whatever is set with the FONT 
command and the colours will be whatever was set by the last COLOUR command. 

If the display is capable of transparent text these commands will allow the use of -1 for the background colour.  
This means that the text is drawn over the background with the background image showing through the gaps in 
the letters.  Displays capable of transparent text are any that use the ILI9341 controller or an SSD1963 
controller.  The latter must have the RD pin specified in the OPTION LCDPANEL command. 

The advanced graphics controls are: 

Frame 
GUI FRAME #ref, caption$, StartX, StartY, Width, Height, Colour 

This will draw a frame which is a box with round corners and a caption.  A frame does not respond to touch but 
is useful when a group of controls need to be visually brought together.  It can also be used to surround a group 
of radio buttons and MMBasic will arrange for the radio buttons surrounded by the frame to be exclusive – that 
is, when one radio button is selected any other button that was selected and within the frame will be 
automatically deselected. 



Page 101             Armmite F4 User Manual Page 101 

LED 
GUI LED #ref, caption$, CenterX, CenterY, Diameter, Colour 

This will draw an indicator light (it looks like a panel mounted LED).  When its value is set to one it will be 
illuminated and when it is set to zero it will be off (a dull version of its colour attribute).  The LED can be made 
to flash by setting its value to the number of milliseconds that it should remain on before turning off. 

The caption will be drawn to the right of the LED and will use the colours set by the COLOUR command.  The 
LED control is not animated when touched but its reference number can be found using TOUCH(REF) and 
TOUCH(LASTREF) in the touch interrupts and any required animation can be done in MMBasic. 

Check Box 
GUI CHECKBOX #ref, caption$, StartX, StartY, Size, Colour 

This will draw a check box which is a small box with a caption. Both the height and width are specified with 
the 'Size' parameter.  When touched an X will be drawn inside the box to indicate that this option has been 
selected and the control's value will be set to 1.  When touched a second time the check mark will be removed 
and the control's value will be zero.  The caption will be drawn to the right of the Check Box and will use the 
colours set by the COLOUR command. 

Push Button 
GUI BUTTON #ref, caption$, StartX, StartY, Width, Height, FColour, BColour 

This will draw a momentary button which is a square switch with the caption on its face.  When touched the 
visual image of the button will appear to be depressed and the control's value will be 1.  When the touch is 
removed the value will revert to zero.  Caption can be a single string with two captions separated by a vertical 
bar (|) character (e.g., "UP|DOWN").  When the button is up the first string will be used and when pressed the 
second will be used. 

Switch 
GUI SWITCH #ref, caption$, StartX, StartY, Width, Height, FColour, BColour 

This will draw a latching switch with the caption on its face.  When touched the visual image of the button will 
appear to be depressed and the control's value will be 1.  When touched a second time the switch will be 
released and the value will revert to zero.  Caption can be a single string with two captions separated by a | 
character (e.g., "ON|OFF").  When this is used the switch will appear to be a toggle switch with each half of the 
caption used to label each half of the toggle switch. 

Radio Button 
GUI RADIO #ref, caption$, CenterX, CenterY, Radius, Colour 

This will draw a radio button with a caption.  When touched the centre of the button will be illuminated to 
indicate that this option has been selected and the control's value will be 1.  When another radio button is 
selected the mark on this button will be removed and its value will be zero.  Radio buttons are grouped together 
when surrounded by a frame and when one button in the group is selected all others in the group will be 
deselected.  If a frame is not used all buttons on the screen will be grouped together.   

The caption will be drawn to the right of the button and will use the colours set by the COLOUR command. 

Display Box 
GUI DISPLAYBOX #ref, StartX, StartY, Width, Height, FColour, BColour 

This will draw a box with rounded corners.  Any text can be displayed in the box by using the CtrlVal(r) = 
command.  This is useful for displaying text, numbers and messages.  This control is not animated when 
touched but its reference number can be found using TOUCH(REF) and TOUCH(LASTREF) in the touch 
interrupts and any required animation can be done in MMBasic. 



Page 102             Armmite F4 User Manual Page 102 

Text Box  
GUI TEXTBOX #ref, StartX, StartY, Width, Height, FColour, BColour 

This will draw a box with rounded corners.  When 
the box is touched a QWERTY keyboard will 
appear on the screen as shown on the right.  Using 
this virtual keyboard any text can be entered into 
the box including upper/lower case letters, 
numbers and any other characters in the ASCII 
character set.  The new text will replace any text 
previously in the box.   

Ent is the enter key, Can is the cancel key and 
will close the text box and return it to its original 
state, the triangle is the shift key, the [ ] key will 
insert a space and the &12 key will select an 
alternate key selection with numbers and special 
characters (there are two sets of special characters 
and the shift key will switch between them). 

The value of the control can be set to a string starting with two hash characters (##) and in that case the string 
(without the leading two hash characters) will be displayed in the box with reduced brightness.  This can be 
used to give the user a hint as to what should be entered (called "ghost text").  Reading the value of the control 
displaying ghost text will return an empty string. When a key is pressed the ghost text will vanish and be 
replaced with the entered text. 

MMBasic will try to position the virtual keyboard on the screen so as to not obscure the text box that caused it 
to appear.  A pen down interrupt will be generated when the keyboard is deployed and a key up interrupt will 
be generated when the Enter or Cancel keys are touched and the keyboard is hidden.  If necessary, the virtual 
keyboard can be dismissed by the program (same as touching the cancel button) with the command: GUI 
TEXTBOX CANCEL.  If the virtual keyboard is not displayed this will do nothing. 

Number Box 
GUI NUMBERBOX #ref, StartX, StartY, Width, Height, FColour, BColour 

This will draw a box with rounded corners.  When 
the box is touched a numeric keypad will appear 
on the screen as shown on the right.  Using this 
virtual keypad any number can be entered into the 
box including a floating point number in 
exponential format.  The new number will replace 
the number previously in the box. 

The Alt key will select an alternative key selection 
and the other special keys are the same as with the 
text box. 

Similar to the Text Box, the value of the control can 
set to a literal string with two leading hash 
characters (e.g., "##Hint") and in that case the string (without the leading two characters) will be displayed in the 
box with reduced brightness.  Reading this will return zero and when a key is pressed the ghost text will vanish. 

MMBasic will try to position the virtual keypad on the screen so as to not obscure the number box that caused 
it to appear.  A pen down interrupt will be generated when the keypad is deployed and a key up interrupt will 
be generated when the Enter key is touched and the keypad is hidden.  Also, when the Enter key is touched the 
entered text will be evaluated as a number and the NUMBERBOX control redrawn to display this number.   

If necessary, the virtual keypad can be dismissed by the program (same as touching the cancel button) with the 
command: GUI NUMBERBOX CANCEL.  If it is not displayed this command will do nothing. 



Page 103             Armmite F4 User Manual Page 103 

Formatted Number Box 
GUI FORMATBOX #ref, Format, StartX, StartY, Width, Height, FColour, BColour 

This will draw a box with rounded corners.  When the box is touched a numeric keypad will appear similar to a 
Number Box.  The difference is that the Formatted Number Box will require the user to enter numbers 
according to a specific format for dates, time, etc.  Invalid keys on the keypad will be disabled and the user will 
be guided in their entry with guide text.  This means that the programmer can be assured that the entry made by 
the user will always be in a fixed format. 

The type of entry is controlled by the 'Format' argument as follows: 

DATE1  Date in UK/Aust/NZ format (dd/mm/yy) 
DATE2  Date in USA format (mm/dd/yy) 
DATE3  Date in international format (yyyy/mm/dd) 
TIME1 Time in 24 hour notation (hh:mm) 
TIME2  Time in 24 hour notation with seconds (hh:mm:ss) 
TIME3  Time in 12 hour notation (hh:mm AM/PM) 
TIME4  Time in 12 hour notation with seconds (hh:mm:ss AM/PM) 
DATETIME1  Both date (UK fmt) and time (12 hour) (dd/mm/yy hh:mm AM/PM) 
DATETIME2  Both date (UK fmt) and time (24 hour) (dd/mm/yy hh:mm) 
DATETIME3  Both date (USA fmt) and time (12 hour) (mm/dd/yy hh:mm AM/PM) 
DATETIME4  Both date (USA fmt) and time (24 hour) (mm/dd/yy hh:mm) 
LAT1  Latitude in degrees, minutes and seconds (d°` mm' ss" N/S) 
LAT2  Latitude with seconds to one decimal place (dd° mm' ss.s" N/S) 
LONG1  Longitude in degrees, minutes and seconds (ddd° mm' ss" E/W) 
LONG2  Longitude with seconds to one decimal place (ddd° mm' ss.s" E/W) 
ANGLE1  Angle in degrees and minutes (ddd° mm') 

For example: 
  GUI FORMATBOX #1, DATE1, 300, 150, 200, 50  

would create a data entry box and when it is touched a keypad will 
appear as shown on the right.  Note that: 

 The display box is filled with a guide string to prompt the 
user as to the data required. 

 Because the day of the month can only start with a digit 
from 0 to 3 all other keys are disabled.  This also happens 
with other numbers that have a limited range. 

 The value of the control retrieved via CtrlVal(#1) is a string.   
As an example, if the user entered the date for the 8th of 
May 2020 the returned string would be "08/05/20" (i.e., the 
UK/Aust/NZ format as specified by DATE1). 

The value of the control can be pulled apart using the string functions or, in some cases, the string can be used 
directly.  For example, if using the above format box to get a date from the user the Armmites RTC clock could 
then be directly set as follows: 
  DATE$ = CtrlVal(#1) 

You can use the USA style DATETIME4 to get the date/time.  In that case you would use this to set the RTC: 
  Date$ MID$(CtrlVal(#1),4,3) + LEFT$(CtrlVal(#1),2) + RIGHT$((CtrlVal(#1),9) 

MMBasic will try to position the virtual keypad on the screen so as to not obscure the format box that caused it 
to appear.  A pen down interrupt will be generated when the keypad is deployed and a key up interrupt will be 
generated when all the required data has been entered and the keypad is hidden.  

If necessary, the virtual keypad can be dismissed by the program (same as touching the cancel button) with the 
command: GUI FORMATBOX CANCEL (if the keypad is not displayed this command will do nothing). 



Page 104             Armmite F4 User Manual Page 104 

Spin Box  
GUI SPINBOX #ref, StartX, StartY, Width, Height, FColour, BColour, Step, 

Minimum, Maximum 

This will draw a box with up/down icons on either end.  When these icons are touched the number in the box 
will be incremented or decremented by the 'StepValue', holding down the touch will repeat at a fast rate.  
'Minimum' and 'Maximum' set a limit on the value that can be entered.  'StepValue', 'Minimum' and 'Maximum' 
are optional and if not specified 'StepValue' will be 1 and there will be no limit on the number entered.  A pen 
down interrupt will be generated every time up/down is touched or when automatic repeat occurs. 

Caption 
GUI CAPTION #ref, text$, StartX, StartY, Alignment, FColour, BColour 

This will draw a text string on the screen. It is similar to the basic drawing command TEXT, the difference 
being that MMBasic will automatically dim this control if a keyboard or number pad is displayed. 

'Alignment' is zero to three characters (a string expression or variable is also allowed) where the first letter is 
the horizontal alignment around X and can be L, C or R for LEFT, CENTER, RIGHT and the second letter is 
the vertical alignment around Y and can be T, M or B for TOP, MIDDLE, BOTTOM.  A third character can be 
used to indicate the rotation of the text.  This can be 'N' for normal orientation, 'V' for vertical text with each 
character under the previous running from top to bottom, 'I' the text will be inverted (i.e., upside down), 'U' the 
text will be rotated counter clockwise by 90º and 'D' the text will be rotated clockwise by 90º.  The default 
alignment is left/top with no rotation.   

If the colours are not specified this control will use the colours set by the COLOUR command. 

Circular Gauge 
GUI GAUGE #ref, StartX, StartY, Radius, FColour, BColour, min, max, 
nbrdec, units$, c1, ta, c2, tb, c3, tc, c4 

This will define a graphical circular analogue gauge with a digital display in the centre showing the value and 
units.  If specified the gauge will be coloured to provide a graphical indication of the signal level (eg, green for 
OK, yellow for warning, etc.). 

'StartX' and 'StartY' are the coordinates of the centre of the gauge while 'Radius' is the distance from the centre 
to the outer edge. 

'min' is the value associated with the minimum value of the gauge and 'max' is the 
maximum value.  When CtrlVal() is used to assign a value (floating point or 
integer) to the gauge the analogue portion of the gauge will be drawn to a length 
proportional to the range between 'min' and 'max'.  At the same time the digital 
value will be drawn in the centre of the gauge using the current font settings (set 
with the FONT command).  'nbrdec' specifies the number of decimal places to be 
used in this display.  Under the digital value the 'units$' will be displayed (this can 
be skipped or a zero length string used if not required). 

Normally the analogue graph is drawn using the colour specified in 'Fcolour' 
however a multi colour gauge can be created using 'c1' to 'c4' for the colours and 
'ta' to 'tc' for the thresholds used to determine when the colour will change. 

Specifically, 'c1' is the colour to be used for values up to 'ta'.  'c2' is the colour to be 
used for values between 'ta' and 'tb', 'c3' is used for values between 'tb' and 'tc' and 
c4 is used for values above 'tc'.  Colours and thresholds not required can be left off 
then list.  For example, for a two colour gauge only 'c1', 'ta' and 'c2' need to be 
specified.   

When colours and thresholds are specified the background of the gauge will be drawn with a dull version of the 
gauge colour at that level ("ghost colouring") so that the user can appreciate how close to the various thresholds 
the actual value is.  Also the digital value displayed in the centre will also change to the colour specified by the 
current value. 

If only one colour is required for the whole analogue graph it can be specified by just using 'c1' and leaving all 
the following parameters off. 



Page 105             Armmite F4 User Manual Page 105 

Bar Gauge 
GUI BARGAUGE #ref, StartX, StartY, width, height, FColour, BColour, min, 
max, c1, ta, c2, tb, c3, tc, c4 

This will define either a horizontal or vertical bar gauge.  The gauge 
can be coloured to provide a graphical indication of the signal level 
(eg, green for OK, yellow for warning, etc) and many bar graphs can 
be packed close together so that a number of values can be displayed 
simultaneously using a small amount of screen space (as shown in 
the image which consists of ten bar gauges). 

If the width is less than the height the bar gauge will be drawn 
vertically with the analogue graph growing from the bottom towards 
the top.  Otherwise, if the width is more that the height, it will be 
drawn horizontally with the analogue graph growing from the left 
towards the right.  In both cases 'StartX' and 'StartY' reference the 
top left coordinate of the bar graph while 'width' is the horizontal 
width and 'height' the vertical height. 

The bar graph does not have a digital display of its value but other 
than that the parameters are the same as for the circular gauge (described above). 

 'min' and 'max' specify the range of values for the bar and, if specified, 'c1' to 'c4' and 'ta' to 'tc' specify the 
colours and thresholds for the analogue bar image.  Note that unlike the circular bar gauge a "ghost image" of 
the colours is not shown in the background.   

As with the circular gauge, if only one colour is required for the whole gauge it can be specified by just using 
'c1' and leaving all the following parameters off. 

Area 
GUI AREA #ref, StartX, StartY, Width, Height 

This will define an invisible area of the screen that is sensitive to touch and will set TOUCH(REF) and 
TOUCH(LASTREF) accordingly when touched or released.   It can be used as the basis for creating a custom 
control which is defined and managed by the BASIC program. 

Interacting with Controls 
Using the following commands and functions the characteristics of the on screen controls can be changed and 
their value retrieved. 

 = CTRLVAL(#ref) 
This is a function that will return the current value of a control.  For controls like check boxes or switches it 
will be the number one (true) indicating that the control has been selected by the user or zero (false) if not.  
For controls that hold a number (e.g., a SPINBOX) the value will be the number (normally a floating point 
number).  For controls that hold a string (e.g., TEXTBOX) the value will be a string.  For example: 
        PRINT "The number in the spin box is: " CTRLVAL(#10) 

 CTRLVAL(#ref) =  
This command will set the value of a control.  For off/on controls like check boxes it will override any 
touch input and can be used to depress/release switches, tick/untick check boxes, etc.  A value of zero is off 
or unchecked and non zero will turn the control on.  For a LED it will cause the LED to be illuminated or 
turned off.  It can also be used to set the initial value of spin boxes, text boxes, etc.  For example: 
        CTRLVAL(#10) = 12.4 

 GUI FCOLOUR colour, #ref1 [, #ref2, #ref3, etc] 
This will change the foreground colour of the specified controls to 'colour'.  This is especially handy for a 
LED which can change colour. 

 GUI BCOLOUR colour, #ref1 [, #ref2, #ref3, etc] 
This will change the background colour of the specified controls to 'colour'.  

 = TOUCH(REF) 
This is a function that will return the reference number of the control currently being touched.  If no control 
is currently being touched it will return zero. 



Page 106             Armmite F4 User Manual Page 106 

 = TOUCH(LASTREF) 
This is a function that will return the reference number of the control that was last touched.  

 GUI  DISABLE #ref1 [, #ref2, #ref3, etc] 
This will disable the controls in the list.  Disabled controls do not respond to touch and will be displayed 
dimmed.    The keyword ALL can be used as the argument and that will disable all controls on the currently 
displayed page.  For example: 
GUI DISABLE ALL 

 GUI  ENABLE #ref1 [, #ref2, #ref3, etc] 
This will undo the effects of GUI DISABLE and restore the controls in the list to normal operation.  The 
keyword ALL can be used as the argument for all controls on the currently displayed page. 

 GUI  HIDE #ref1 [, #ref2, #ref3, etc] 
This will hide the controls in the list.  Hidden controls will not respond to touch and will be replaced on the 
screen with the current background colour.  The keyword ALL can be used as the argument. 

 GUI  SHOW #ref1 [, #ref2, #ref3, etc] 
This will undo the effects of GUI HIDE and restore the controls in the list to being visible and capable of 
normal operation.  The keyword ALL can be used as the argument for all controls. 

 GUI  DELETE #ref1 [, #ref2, #ref3, etc] 
This will delete the controls in the list.  This includes removing the image of the control from the screen 
using the current background colour and freeing the memory used by the control.  The keyword ALL can 
be used as the argument and that will cause all controls to be deleted. 

MsgBox() 
The MsgBox() function will display a message box on the screen and wait for user input.  While the message 
box is displayed all controls will be disabled so that the message box has the complete focus. 

The syntax is: 
r = MsgBox(message$, button1$ [, button2$ [, button3$ [, button4$]]]) 

All arguments are strings.  'message$' is the message to display.  This can contain one or more tilde characters 
(~) which indicate a line break.  Up to 10 lines can be displayed inside the box.  'button1$' is the caption for the 
first button, 'button2$' is the caption for the second button, etc.  At least one button must be specified and four 
is the maximum.  Any buttons not included in the argument list will not be displayed. 

The font used will be the default font set using the FONT command and the colours used will be the defaults 
set by the COLOUR command.  The box will be automatically sized taking into account the dimensions of the 
default font, the number of lines to display and the number of buttons specified. 

When the user touches a button the message box will erase itself, restore the display (eg, re enable all controls) 
and return the number of the button that was touched (the first button will return 1, the second 2, etc).  Note 
that, unlike all other GUI controls the BASIC program will stop running while the message box is displayed, 
interrupts however will be honoured and acted upon. 

To illustrate the usage of a message box will the following program fragment will attempt to open a file and if 
an error occurs the program will display an error message using the MsgBox() function.  The message has two 
lines and the box has two buttons for retry and cancel. 
Do 
  On Error Skip 
  Open "file.txt" For Input As #1 
  If MM.ErrNo <> 0 Then 
    if MsgBox("Error~Opening file.txt","RETRY","CANCEL") = 2 Then Exit Sub 
  EndIf 
Loop While MM.ErrNo <> 0 



Page 107             Armmite F4 User Manual Page 107 

This would be the result if the file "file.txt" did not exist: 

 



Page 108             Armmite F4 User Manual Page 108 

Advanced Graphics Programming Techniques 
When programming using the advanced GUI commands implemented on the Armite F4 there are a number of 
hints and techniques to consider that will make it easier to develop and maintain your program. 

The User Should Be In Control 
Traditional character based programs are normally in control of the interaction with the user.  For example, the 
program may display a menu and prompt the user to select an action.  If the user selects an invalid option the 
program would display an error message and display the menu options again. 

However graphical based programs such as that created using the advanced GUI commands are different.  
Usually the program just starts running doing what it normally does (eg, control temperature, speed, etc) and it 
is the user's job to select and change parameters without being prompted.  This is a different way of 
programming and is often hard for the traditional programmer to get used to this different technique. 

As an example, consider a program that is to control a cutting device.  The traditional program would prompt 
the user for the speed and cutting time.  When both have been entered the program would prompt to start the 
cutting cycle.  However, a graphical based program would display two number boxes where the user could 
enter the speed and time along with a run button.  The number boxes could be filled with default values and the 
run button would be disabled if the user entered an invalid speed or time.  When the run button is touched the 
cutting cycle would start. 

A good example of this type of graphical interface is the dialogue box used on a Windows/IOS/Android 
computer to set the time and date.  It displays a number of boxes where the user can enter the date/time along 
with an OK button that tells the program to accept the data entered.  At no time is the user forced to make a 
selection from a menu.  Also, the current time/date is already displayed in the entry boxes so the user can 
accept them as the default if they wanted to do so. 

If you need some inspiration as to how your graphical program should look and feel check your nearest GUI 
based operating system to see how they operate. 

Program Structure 
Typically a program would start by defining the controls (which MMBasic will draw on the screen), then it 
would set the defaults and finally it would drop into a continuous loop where it would do whatever job it was 
design to do.  For example, take the case of a simple controller for a motor where the user could select the 
speed and cause the motor to run by pressing an on screen button.   

To implement this function the program would look something like this: 
GUI CAPTION #1, "Speed (rpm)", 200, 50       ' label the number box 
GUI NUMBERBOX #2, 200, 100, 150, 40          ' define and draw the number box 
CtrlVal(#2) = 100          ' default value for the speed 
GUI BUTTON #3, "RUN", 200, 350, 0, RGB(red)  ' define and draw the RUN button 
 
DO                                           ' this runs in a loop forever 
  IF CtrlVal(#3)<10 OR CtrlVal(#3)>200 THEN  ' check the speed setting 
    GUI DISABLE #3                           ' disable RUN if it is invalid 
  ELSE                                       ' otherwise 
    GUI ENABLE #3                            ' enable the RUN button 
  ENDIF 
 
  IF CtrlVal(#3) = 1 THEN                    ' if the button is pressed 
    SetMotorSpeed CtrlVal(#2)                ' make the motor run 
  ELSE                                       ' otherwise the button is up 
    SetMotorSpeed 0                          ' therefore set motor speed to zero 
  ENDIF 
LOOP 

Note that the user is not prompted to do anything; the program just sits in a loop reacting to the changes that the 
user has made to the controls (ie, the user is in control). 



Page 109             Armmite F4 User Manual Page 109 

Disable Invalid Controls 
As in the above example, disabling a control will prevent a user from using it and MMBasic will redraw it in a 
dull colour to indicate that it is not available.  This is the equivalent of an error message in a traditional text 
based program and is more user friendly than popping up a message box which must be dismissed before 
anything else can be done.   

There are many times that a control could be invalid, for example when an input is not ready or simply when an 
option or action does not apply.  Later, when the control becomes valid you can use the GUI ENABLE 
command to return it to use.  Another example is when a GUI NUMBERBOX keypad is displayed MMBasic 
will automatically disable all other controls on the screen so that it is obvious to the user where their input is 
required.  

Disabling a control still leaves it on the screen, so that the user knows that it is there but it will be dimmed and 
will not respond to touch. Not responding to touch also means that the user cannot change it and an interrupt 
will not be generated when it is touched.  This is handy for you the programmer because you do not have to 
check if the control is valid before acting on it. 

Use Constants for Control Reference Numbers 
The advanced controls use a reference number to identify the control.  To make it easy to read and maintain 
your program you should define these numbers as constants with easy to recognise names.   

For example, in the following program fragment MAIN_SWITCH is defined as a constant and this constant is 
used wherever the reference number for that control is required: 
CONST MAIN_SWITCH = 5 
CONST ALARM_LED = 6 
'… 
GUI SWITCH MAIN_SWITCH, "ON|OFF", 330, 50, 140, 50,  RGB(white), RGB(blue) 
GUI LED ALARM_LED, 215, 220,30, RGB(red) 
'… 
IF CtrlVal(MAIN_SWITCH) = 0 THEN …   ' for example turn the pump off 
IF ALARM THEN CtrlVal(ALARM_LED) = 1 

It is much easier to remember what MAIN_SWITCH does than remembering what control the number 5 refers 
to.  Also, when you have a lot of controls it is much easier to renumber the controls when all their numbers are 
defined at the one place at the start of the program. 

By default the reference number must be a number between 1 and 100 however the upper limit can be changed 
with the OPTION CONTROL command.  Increasing the number will consume more RAM and decreasing it 
will recover some RAM. 

The Main Program Is Still Running 
It is important to realise that your main BASIC program is still running while the user is interacting with the 
GUI controls.  For example, it will continue running even while a user holds down an on screen switch and it 
will keep running while the virtual keyboard is displayed as a result of touching a TEXTBOX control. 

For this reason your main program should not arbitrarily update touch sensitive screen controls, because they 
might change the on screen image while the user is using them (with undefined results).  Normally when a 
BASIC program using GUI controls starts it will initialise controls such as a SPINBOX, NUMBERBOX and 
TEXTBOX to some initial value but from then on the main program should just read the value of these 
controls – it is the responsibility of the user to change these, not your program. 

However, if you do want to change the value of such an on-screen control you need some mechanism to 
prevent both the program and the user making a change at the same time.  One method is to set a flag within the 
key down interrupt to indicate that the control should not be updated during this time.  This flag can then be 
cleared in the key up interrupt to allow the main program to resume updating the control. 

Note that this discussion only applies to controls that respond to touch.  Controls such as CAPTION can be 
changed at any time by the main program and often are. 



Page 110             Armmite F4 User Manual Page 110 

Use Interrupts and SELECT CASE Statements 
Everything that happens on a screen using the advanced controls will be signalled by an interrupt, either touch 
down or touch up.  So, if you want to do something immediately when a control is changed, you should do it in 
an interrupt.  Mostly you will be interested in when the touch (or pen) is down but in some cases you might also 
want to know when it is released. 

Because the interrupt is triggered when the pen touches any control or part of the screen you need to discover 
what control was being touched.  This is best performed using the TOUCH(REF) function and the SELECT 
CASE statement.   

For example, in the following fragment the subroutine PenDown will be called when there is a touch and the 
function TOUCH(REF) will return the reference number of the control being touched.  Using the SELECT 
CASE the alarm LED will be turned on or off depending on which button is touched.  The action could be any 
number of things like raising an I/O pin to turn on a physical siren or printing a message on the console.   
CONST ALARM_ON = 15 
CONST ALARM_OFF = 16 
CONST ALARM_LED = 33 
GUI INTERRUPT PenDown 
'… 
GUI BUTTON ALARM_ON, "ALARM ON ", 330, 50, 140, 50, RGB(white), RGB(blue) 
GUI BUTTON ALARM_OFF, "ALARM OFF ", 330, 150, 140, 50, RGB(white), RGB(blue) 
GUI LED ALARM_LED, 215, 220, 30, RGB(red) 
'… 
DO : LOOP    ' the main program is doing something 
 
' this sub is called when touch is detected 
SUB PenDown 
  SELECT CASE TOUCH(REF) 
    CASE ALARM_ON 
      CtrlVal(ALARM_LED) = 1 
    CASE ALARM_OFF 
      CtrlVal(ALARM_LED) = 0 
  END SELECT 
END SUB 

The SELECT CASE can also test for other controls and perform whatever actions are required for them in their 
own section of the CASE statement. 

The important point is that the maintenance of the controls (eg, responding to the buttons and turning the alarm 
LED off or on) is done automatically without the main program being involved – it can continue doing 
something useful like calculating some control response, etc. 

Touch Up Interrupt 
In most cases you can process all user input in the touch down interrupt.  But there are exceptions and a typical 
example is when you need to change the characteristics of the control that is being touched.  For example, if 
you wanted to change the foreground colour of a button from white to red when it is down.  When it is returned 
to the up state the colour should revert to white. 

Setting the colour on the touch down is easy.  Just define a touch down interrupt and change the colour in the 
interrupt when that control is touched.  However, to return the colour to white you need to detect when the 
touch has been removed from the control (ie, touch up).  This can be done with a touch up interrupt. 

To specify a touch up interrupt you add the name of the subroutine for this interrupt to the end of the GUI 
INTERRUPT command.  For example: 
GUI INTERRUPT IntTouchDown, IntTouchUp 

Within the touch up subroutine you can use the same structure as in the touch down sub but you need to find 
the reference number of the last control that was touched.  This is because the touch has already left the screen 
and no control is currently being touched.  To get the number of the last control touched you need to use the 
function  TOUCH(LASTREF) 



Page 111             Armmite F4 User Manual Page 111 

The following example shows how you could meet the above requirement and implement both a touch down 
and a touch up interrupt: 
SUB IntTouchDown 
  SELECT CASE TOUCH(REF) 
    CASE ButtonRef  
      GUI FCOLOUR RGB(RED), ButtonRef  
  END SELECT 
END SUB 
 
SUB IntTouchUp 
  SELECT CASE TOUCH(LASTREF) 
    CASE ButtonRef  
      GUI FCOLOUR RGB(WHITE), ButtonRef  
  END SELECT 
END SUB 

Keep Interrupts Very Short 
Because a touch interrupt indicates a request by the user it is tempting to do some extensive programming 
within an interrupt.  For example, if the touch indicates that the user wants to send a message to another 
controller it sounds logical to put all that code within the interrupt.  But this is not a good idea because the 
Armmite cannot do anything else while your program is processing the interrupt and sending a message could 
take many milliseconds. 

Instead your program should update a global variable to indicate what is requested and leave the actual 
execution to the main program.  For example, if the user did touch the "send a message" button your program 
could simply set a global variable to true.  Then the main program can monitor this variable and if it changes 
perform the logic and communications required to satisfy the request. 

Remember the commandment "Thou shalt not hang around in an interrupt”. 

Multiple Screens 
Your program might need a number of screens with differing controls on each screen.  This could be 
implemented by deleting the old controls and creating new ones when the screen is switched.  But another way 
to do this is to use the GUI SETUP and PAGE commands. These allow you to organise the controls onto pages 
and with one simple command you can switch pages.  All controls on the old page will be automatically hidden 
and controls on the new page will be automatically shown. 

To allocate controls to a page you use the GUI SETUP nn command where nn refers to the page in the range of 
1 to 32.  When you have used this command any newly created controls will be assigned to that page.  You can 
use GUI SETUP as many times that you want.  For example, in the program fragment below the first two 
controls will be assigned to page 1, the second to page 2, etc. 
GUI SETUP 1 
GUI Caption #1, "Flow Rate", 20, 170,, RGB(brown),0 
GUI Displaybox #2, 20, 200, 150, 45 
 
GUI SETUP 2 
GUI Caption #3, "High:", 232, 260, LT, RGB(yellow) 
GUI Numberbox #4, 318, 6,90, 12, RGB(yellow), RGB(64,64,64) 
 
GUI SETUP 3 
GUI Checkbox #5, "Alarms", 500, 285, 25 
GUI Checkbox #6, "Warnings", 500, 325, 25 

By default only the controls setup as page 1 will be displayed and the others will be hidden. 

To switch the screen to page 3 all you need do is use the command PAGE 3.  This will cause controls #1 and 
#2 to be automatically hidden and controls #5 and #6 to be displayed.  Similarly PAGE 2 will hide all except 
#3 and #4 which will be displayed. 

You can specify multiple pages to display at the one time, for example, PAGE 1,3 will display both pages 1 and 3 
while hiding page 2.  This can be useful if you have a set of controls that must be visible all the time.  For example, 
PAGE 1,2 and PAGE 1,3 will leave the controls on page 1 visible while the others are switched on and off. 



Page 112             Armmite F4 User Manual Page 112 

It is perfectly legal for a program to modify controls on other pages even though they are not displayed at the 
time.  This includes changing the value and colours as well as disabling or hiding them.  When the display is 
switched to their page the controls will be displayed with their new attributes. 

It is possible to place the PAGE commands in the touch down interrupt so that pressing a certain control or part 
of the screen will switch to another page. 

Note that when ALL is used for the list of controls in commands such as GUI ENABLE ALL this only refers to 
the controls on the pages that are currently selected for display.  Controls on other pages will be unaffected.   

All programs start with the equivalent of the commands GUI SETUP 1 and PAGE 1 in force.  This means that 
if the GUI SETUP and PAGE commands are not used the program will run as you would expect with all 
controls displayed. 

A typical usage of the PAGE command is shown below.  Two buttons (which are always displayed) allow the 
user to select between the first page and the second page.  The switch is done in the touch down interrupt. 
GUI SETUP 1 
GUI Button #10, "SELECT PAGE ONE", 50, 100, 150, 30, RGB(yellow), RGB(blue) 
GUI Button #11, "SELECT PAGE TWO", 50, 140, 150, 30, RGB(yellow), RGB(blue) 
 
GUI SETUP 2 
GUI Caption #1, "Displaying First Page", 20, 20 
 
GUI SETUP 3 
GUI Caption #2, "Displaying Second Page", 20, 50 
 
Page 1, 2 
GUI INTERRUPT TouchDown 
Do 
   ' the main program loop 
Loop 
 
Sub TouchDown 
  If Touch(REF) = 10 Then Page 1, 2 
  If Touch(REF) = 11 Then Page 1, 3 
End Sub 

Multiple Interrupts 
With many screen pages the interrupt subroutine could get long and complicated.  To work around that it is 
possible to have multiple interrupt subroutines and switch dynamically between them as you wish (normally 
after switching pages).  This is done by redefining the current interrupt routines using the GUI INTERRUPT 
command. 

For example, this program fragment uses different interrupt routines for pages 4 and 5 and they are specified 
immediately after switching the pages. 
PAGE 4 
GUI INTERRUPT P4keydown, P4keyup 
... 
PAGE 5 
GUI INTERRUPT P5keydown, P5keyup 
... 

Using Basic Drawing Commands 
There are two types of objects that can be on the screen.  These are the GUI controls and the basic drawing 
objects (PIXEL, LINE, TEXT, etc).  Mixing the two on the screen is not a good idea because MMBasic does 
not track the position of the basic drawing objects and they can clash with the GUI controls. 

As a result, unless you are prepared to do some extra programming, you should use either the GUI controls or 
the basic drawing objects – but you should not use both.  So, for example, do not use TEXT but use GUI 
CAPTION instead.  If you only use GUI controls MMBasic will manage the screen for you including erasing 
and redrawing it as required, for example when a virtual keyboard is displayed.   

Note that the CLS command (used to clear the screen) will automatically set any GUI controls on the screen to 
hidden (ie, it does a GUI HIDE ALL before clearing the screen). 



Page 113             Armmite F4 User Manual Page 113 

The main problem with mixing basic graphics and GUI controls occurs with the Text Box, Formatted Box and 
Number Box controls which display a virtual keyboard.  This can erase any basic graphics and MMBasic will 
not know to restore them when the keyboard is removed.  If you want to mix basic graphics with GUI controls 
you should: 

 Intercept the touch down interrupt for the Text Box, Formatted Box and Number Box controls as that 
indicates that a virtual keyboard is about to be displayed and that will give you the opportunity to redraw 
your non GUI  basic graphics in anticipation of this event (for example, draw them in a dimmed state to 
appear as if they are disabled).  

 Intercept the touch up interrupt for the same controls as that indicates that the virtual keyboard has been 
removed and you could then redraw any non GUI graphics in their original state. 

The following example demonstrates this technique.  On a 5" or 7" display it initially draws a box filled with 
bright blue using the basic drawing commands.  Then, when the number pad is about to pop up it will redraw 
the box in a dull colour.  Finally, when the keypad is removed from the screen the pen up interrupt will redraw 
the box in its original colours. 
GUI INTERRUPT TouchDownInterrupt, TouchUpInterrupt 
BOX 400, 250, 300, 200,  , RGB(WHITE), RGB(BLUE) 
GUI NUMBERBOX 1, 318,100,90,40,RGB(YELLOW),RGB(64,64,64) 
DO : LOOP 
 
SUB TouchDownInterrupt 
  IF TOUCH(REF) = 1 THEN BOX 400, 250, 300, 200,  , RGB(128,128,128), RGB(0,0,128) 
END SUB  
 
SUB TouchUpInterrupt 
  IF TOUCH(LASTREF) = 1 THEN BOX 400, 250, 300, 200,  , RGB(WHITE), RGB(BLUE) 
END SUB 

Overlapping Controls 
Controls can be defined to overlap on the display, this mostly occurs with GUI AREA which, as an example, 
you might want to capture a touch that was intended for (say) a GUI BUTTON.  This will allow you to create 
your own animation for the button rather than that provided by MMBasic.  In this case the control that you wish 
to respond to the touch (ie, GUI AREA) should have a lower reference number (ie, #ref) than the control that 
it is covering (ie, the GUI BUTTON).  This is because when the screen is touched MMBasic will check the 
current list of active controls starting with control number 1 and working upwards.  When a match is made 
MMBasic will take the appropriate action and terminate the search.  This results in the lower numbered control 
effectively masking out a higher numbered control covering the same screen area as the touched location. 

Timing LCD Updates with GETSCANLINE()  
In some cases, you may see a tearing effect or flicker when updating an LCD display. When you write to the 
LCD you are just updating its RAM. The LCD Panel is taking that data in RAM and updating the actual screen 
at its own (pretty fast) pace. If you change the data while it is refreshing that part of the screen, it may be half 
way through reading that section, so the screen will briefly have part of the old data and part of the new data 
until the next refresh occurs. You can use the GETSCANLINE() function to ask what line is being updated. 
Use this to try timing your update for when the LCD is not refreshing from where you want to write. Its a bit of 
trial and error with the numbers, as the scanline moves pretty quickly so you need to estimate where it will be, 
but you can see the idea below. This display is 800*480 and refreshes line 0-800. The idea is not to do the 
update when the LCD is refreshing where the box will be, so only do the update if its gone past line 100 and its 
not near the end and about to restart at 0. You would not normally need this unless you see the problem. 
     i=GETSCANLINE()                                         
     do while i>650 or i<= 100                               ‘wait for scanline to be where you want it 
        i=GETSCANLINE() 
     loop 
     BOX 0,0,100,100,,RGB(RED),RGB(RED)   ‘its not near our box so do the update 

 



Page 114             Armmite F4 User Manual Page 114 

The Pump Control Example GUI Program 
As a test you can enter the following "Pump Control" demonstration program as shown in this YouTube video: 
https://youtu.be/j12LidkzG2A.  It will draw a selection of advanced controls as shown below.   

These controls are active so that you can test how they work. 

 
 

Note that this demonstration expects a 800 x 480 pixel LCD panel in landscape orientation with touch (ie, a 5”, 
7" or 8" SSD1963 based panel or one of the IPS_4_16 800*480). 
''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
' Demonstration program for the Micromite+ and Armmite F4 
' It does not do anything useful except demo the various controls 
' 
' Geoff Graham, October 2015 
''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
 
Option Explicit 
Dim ledsY 
Colour RGB(white), RGB(black) 
 
' reference numbers for the controls are defined as constants 
Const c_head = 1, c_pmp = 2, sw_pmp = 3, c_flow = 4, tb_flow = 5 
Const led_run = 6, led_alarm = 7 
Const frm_alarm = 20, nbr_hi = 21, nbr_lo = 22, pb_test =23 
Const c_hi = 24, c_lo = 25 
Const frm_pump = 30, r_econ = 31, r_norm = 32, r_hi = 33 
Const frm_log = 40, cb_enabled = 41, c_fname = 42, tb_fname = 43 
Const c_log = 44, cb_flow = 45, cb_pwr = 46, cb_warn = 47 
Const cb_alarm = 48, c_bright = 49, sb_bright = 50 
 
' now draw the "Pump Control" display 
CLS 
GUI Interrupt TouchDown, TouchUp 
 
' display the heading 
Font 2,2 : GUI Caption c_head, "Pump Control", 10, 0 
Font 3 : GUI Caption c_pmp, "Pump", 20, 60, , RGB(brown) 
 
' now, define and display the controls 
' first display the switch 
Font 4 
GUI Switch sw_pmp, "ON|OFF", 20, 90, 150, 50, RGB(white),RGB(brown) 
CtrlVal(sw_pmp) = 1 

https://youtu.be/j12LidkzG2A


Page 115             Armmite F4 User Manual Page 115 

 
' the flow rate display box 
Font 3 : GUI Caption c_flow, "Flow Rate", 20, 170,, RGB(brown),0 
Font 4 : GUI Displaybox tb_flow, 20, 200, 150, 45 
CtrlVal(tb_flow) = "20.1" 
 
' the radio buttons and their frame 
Font 3 : GUI Frame frm_pump, "Power", 20, 290, 170, 163, RGB(200,20,255) 
GUI Radio r_econ, "Economy", 43, 328, 12, RGB(230, 230, 255) 
GUI Radio r_norm, "Normal", 43, 374 
GUI Radio r_hi, "High", 43, 418 
CtrlVal(r_norm) = 1     ' start with the "normal" button selected 
 
' the alarm frame with two number boxes and a push button switch 
Font 3 : GUI Frame frm_alarm, "Alarm", 220, 220, 200, 233,RGB(green) 
GUI Caption c_hi, "High:", 232, 260, "LT", RGB(yellow) 
GUI Numberbox nbr_hi, 318,MM.VPos-6,90,MM.FontHeight+12,RGB(yellow),RGB(64,64,64) 
GUI Caption c_lo, "Low:", 232, 325, LT, RGB(yellow),0 
GUI Numberbox nbr_lo, 318,MM.VPos-6,90,MM.FontHeight+12,RGB(yellow),RGB(64,64,64) 
GUI Button pb_test, "TEST", 257, 383, 130, 40,RGB(yellow), RGB(red) 
CtrlVal(nbr_lo) = 15.7 : CtrlVal(nbr_hi) = 35.5 
 
' draw the two LEDs 
Const ledsX = 255, coff = 50    ' define their position 
ledsY = 105 : GUI LED led_run, "Running", ledsX, ledsY, 15, RGB(green) 
ledsY = ledsY+49 : GUI LED led_alarm, "Alarm", ledsX, ledsY, 15, RGB(red) 
CtrlVal(led_run) = 1   ' the switch defaults to on so set the LED on 
 
' the logging frame with check boxes and a text box 
Colour RGB(cyan), 0 
GUI Frame frm_log, "Log File", 450, 20, 330, 355, RGB(green) 
GUI Checkbox cb_enabled, "Logging Enabled", 470, 50, 30, RGB(cyan) 
GUI Caption c_fname, "File Name", 470, 105 
GUI Textbox tb_fname, 470, 135, 290, 40, RGB(cyan), RGB(64,64,64) 
GUI Caption c_log, "Record:", 470, 205, , RGB(cyan), 0 
GUI Checkbox cb_flow, "Flow Rate", 500, 245, 25 
GUI Checkbox cb_alarm, "Alarms", 500, 285, 25 
GUI Checkbox cb_warn, "Warnings", 500, 325, 25 
CtrlVal(cb_enabled) = 1 
CtrlVal(tb_fname) = "LOGFILE.TXT" 
 
' define and display the spinbox for controlling the backlight 
GUI Caption c_bright, "Backlight", 442, 415, ,RGB(200,200,255),0 
GUI Spinbox sb_bright, MM.HPos + 8, 400, 200, 50,,,10, 10, 100 
CtrlVal(sb_bright) = 100 
 
' All the controls have been defined and displayed. At this point 
' the program could do some real work but because this is just a 
' demo there is nothing to do.  So it just sits in a loop. 
Do : Loop 
 
 
' the interrupt routine for touch down 
' using a select case command it has a different process for each control 
Sub TouchDown 
  Select Case Touch(REF)      ' find out the control touched 
    Case cb_enabled           ' the enable check box 
      If CtrlVal(cb_enabled) Then 
        GUI ENABLE c_fname, tb_fname, c_log, cb_flow, cb_alarm, cb_warn 
      Else 
        GUI Disable c_fname, tb_fname, c_log, cb_flow, cb_alarm, cb_warn 
      EndIf 
    Case sb_bright            ' the brightness spin box 
      BackLight CtrlVal(sb_bright) 
    Case sw_pmp               ' the pump on/off switch 
      CtrlVal(led_run) = CtrlVal(sw_pmp) 
      CtrlVal(tb_flow) = Str$(CtrlVal(sw_pmp) * 20.1) 



Page 116             Armmite F4 User Manual Page 116 

      CtrlVal(r_norm) = 1 
    Case pb_test              ' the alarm test button 
      CtrlVal(led_alarm) = 1 
      GUI beep 250 
    Case r_econ               ' the economy radio button 
      CtrlVal(tb_flow) = Str$(CtrlVal(sw_pmp) * 18.3) 
    Case r_norm               ' the normal radio button 
      CtrlVal(tb_flow) = Str$(CtrlVal(sw_pmp) * 20.1) 
    Case r_hi                ' the high radio button 
      CtrlVal(tb_flow) = Str$(CtrlVal(sw_pmp) * 23.7) 
  End Select 
End Sub 
 
' interrupt routine when the touch is removed 
Sub TouchUp 
  Select Case Touch(LASTREF)   ' use the last reference 
    Case pb_test               ' was it the test button 
      CtrlVal(led_alarm) = 0   ' turn off the LED 
  End Select 
End Sub 

 

 

 

 

 



Page 117             Armmite F4 User Manual Page 117 

Miscellaneous Features 
Serial Interfaces 
The Armmite F4 has built in support for up to four serial interfaces.  COM1, COM2, COM3 and COM4 are 
available as standard.  When the serial console is enabled, (OPTION SERIAL CONSOLE ON) COM1 is 
unavailable and becomes the console. 

All serial ports on the Armmite F4 can operate at high speed (up to 1.8M baud) and support the OC and S2 
options.  The DE pin for RS485 is not supported and would need to be driven explicitly by the MMBasic 
program. The INV option is not supported on the ARM chips. 

SPI Interface 
The Armite F4 has built in support for two SPI interfaces.  The commands to control these interfaces use the 
identifier SPI for the first SPI port and SPI2 for the second port.  All commands and functions that can be used 
on the first port (SPI) can be used on the second by using the identifier SPI2. These are: 

 SPI2 OPEN 
 SPI2 WRITE 
 SPI2 READ 
 = SPI2(args, …) 
 SPI2 CLOSE 

SPI based displays and the touch controller will all use the second SPI interface (SPI2).  If any of these features 
are enabled SPI2 will be unavailable to BASIC programs (which should use the first SPI channel instead). 
The onboard W25Q16 Flash chip and the NRF24L01 RF module are controlled on the first SPI port and the SPI 
pins are available at the NRF24L01 connector 

Upgrading Your BASIC Program in the Field 
Often it is desirable to send an upgraded version of your BASIC program to a user and let them load it under 
control of the program already running on the Armmite. 

LOAD "filename.bas", R 

Where filename.bas is the name of the upgraded BASIC file on the SD card.  This will load the BASIC 
program into the Armmite's program memory and immediately restart the CPU and run the new program. 

Your program could execute this command when the user touched a screen button –or- it could check once 
every minute for that file name and, if found, load and run it.  Then, all you have to do is send the updated 
program (on an SD card) to your user to initiate an upgrade.  Easy. 

 

Creating CSUBs 
It is possible to write C code and have it compiled as inline code. This can then be loaded into MMBasic as a 
CSUB which can be called just like it was another MMBasic command. Writing CSUBs is beyond the scope of 
this document other than to document the CSUB command which loads the actual CSUB once its developed.  
This thread on TBS forum is a starting point for if you want further information.  
 
https://www.thebackshed.com/forum/ViewTopic.php?FID=16&TID=14128 

 

 

 
 

https://www.thebackshed.com/forum/ViewTopic.php?FID=16&TID=14128


Page 118             Armmite F4 User Manual Page 118 

Other Devices and Support Resources 
 

The Back Shed Forum 
Support questions should be raised on the Back Shed forum ( http://www.thebackshed.com/forum/Microcontrollers ) 
where there are many enthusiastic Maximite, Micromite and Armmite users who would be only too happy to 
help.  The developers of both the Armmite F4 and MMBasic are also regulars on this forum. 
The forum has a search option, but your can also use google to search the specific site only, by adding the site 
at the front of your search as below. 

site:www.thebackshed.com armmiteF4 Manual 
 
Geoff Graham the developer of MMBasic has many interesting projects and information on his website. This is 
where you can also request the source for your own personal use. ( http://geoffg.net ). 

Fruit of the Shed Wiki 
The Fruit of the Shed is a wiki initiated by TBS member @CaptainBoing. The wiki has a collection of useful 
code modules and device drivers for many common hardware items. A couple of pages have been created 
specifically targeted at the Armmite F4. 
 
This link is to a summary page of items related to the Armmite User Manual and Firmware. It will generally 
point to relevant posts on TBS. 
http://fruitoftheshed.com/MMBasic.Armmite-F4-User-Manual-and-Firmware.ashx 
 
This page created by TBS member @lizby gives a good summary of the available add on modules that might 
be useful in your projects. It also details the adapter boards that have be made to allow other LCD panels to be 
matched up the the Armmite 32 pin FSMC connector. 
http://fruitoftheshed.com/MicroMite%20ArmMite%20and%20MMX%20Hardware.Armmite-F4-
Hardware.ashx 
 
This page provides a useful summary of all the LCD Panels that can be used with the various Micromites and 
Armmites. http://fruitoftheshed.com/MMBasic.LCD Panel list.ashx 
 

Interfacing various hardware modules 
There are many useful hardware devices you many decide you want to use/try out. Many of them have been 
used with MMBasic already and the drivers are posted on TBS or the Fruit of the Shed. All these can be easily 
adapted to the Armmite F4. Basically anything that communicates via Serial, SPI, I2C, 1-Wire, outputs a 
voltage, current etc. can be interfaced if you know or can find the protocol used. 
If the device has not been conquered by MMBasic as yet, the approach is to find a C version (Arduino) of the 
code used to interface it and convert that to MMBasic. 
 
 

Internet Access using ESP8266 
There are several methods of gaining wireless access to the internet using an ESP8266 module. 
Armmite F4 Weather Station with ESP-01 
http://www.thebackshed.com/forum/ViewTopic.php?TID=13419&PID=163479#163479 
http://www.thebackshed.com/forum/ViewTopic.php?TID=11149&PID=131032#131032 
https://sites.google.com/site/annexwifi/home 
 

 
 

http://www.thebackshed.com/forum/Microcontrollers
http://geoffg.net/
http://fruitoftheshed.com/MMBasic.Armmite-F4-User-Manual-and-Firmware.ashx
http://fruitoftheshed.com/MicroMite ArmMite and MMX Hardware.Armmite-F4-Hardware.ashx
http://fruitoftheshed.com/MicroMite ArmMite and MMX Hardware.Armmite-F4-Hardware.ashx
http://fruitoftheshed.com/MMBasic.LCD Panel list.ashx
http://www.thebackshed.com/forum/ViewTopic.php?TID=13419&PID=163479#163479
http://www.thebackshed.com/forum/ViewTopic.php?TID=11149&PID=131032#131032
https://sites.google.com/site/annexwifi/home


Page 119             Armmite F4 User Manual Page 119 

MMBasic Characteristics 
Implementation Characteristics 
Maximum program size (as plain text) is 132KB.  Note that MMBasic tokenises the program when it is stored 
in flash so the final size in flash might vary from the plain text size. 
Maximum length of a command line is 255 characters. 
Maximum length of a variable name or a label is 31 characters. 
Maximum number of dimensions to an array is 6. 
Maximum number of arguments to commands that accept a variable number of arguments is 50. 
Maximum number of nested FOR…NEXT loops is 50. 
Maximum number of nested DO…LOOP commands is 50. 
Maximum number of nested GOSUBs, subroutines and functions (combined) is 50. 
Maximum number of nested multiline IF…ELSE…ENDIF commands is 10. 
Maximum number of user defined subroutines and functions (combined): 256 
Maximum number of interrupt pins that can be configured: 10 
Numbers are stored and manipulated as single precision floating point numbers or 64-bit signed integers.  The 
maximum floating point number allowable is 3.40282347e+38 and the minimum is 1.17549435e-38.  The 
Armmite F4 uses double precision  
The range of 64-bit integers (whole numbers) that can be manipulated is ± 9223372036854775807. 
Maximum string length is 255 characters. 
Maximum line number is 65000. 
Maximum number of global variables and constants is 256 
Maximum number of local variables is 256 
Maximum number of background pulses launched by the PULSE command is 5. 
The maximum number of files that can be listed by the FILES command is 1000 
The maximum length filename supported is 63 characters 

Compatibility 
MMBasic implements a large subset of Microsoft’s GW-BASIC.  There are numerous differences due to 
physical and practical considerations but most standard BASIC commands and functions are essentially the 
same.  An online manual for GW-BASIC is available at http://www.antonis.de/qbebooks/gwbasman/index.html 
and this provides a more detailed description of the commands and functions. 
MMBasic also implements a number of modern programming structures documented in the ANSI Standard for 
Full BASIC (X3.113-1987) or ISO/IEC 10279:1991.  These include SUB/END SUB, the DO WHILE … 
LOOP, the SELECT…CASE statements and structured IF .. THEN … ELSE … ENDIF statements. 
The SELECT CASE commands allow the programmer to create a clear and structured decision tree that is more 
flexible and easier to understand when multiple decisions must be made. The DO WHILE … LOOP command 
make it easy to build loops without using the GOTO statement. User defined subroutines and functions make it 
easy to add your own commands to MMBasic. 
The IF… THEN command can span many lines with ELSEIF … THEN, ELSE and ENDIF statements as 
required and also spaced over many lines. 
 
 
 
 
 
 
 
 
 
 
 

http://www.antonis.de/qbebooks/gwbasman/index.html


Page 120             Armmite F4 User Manual Page 120 

 
 

MMBasic Firmware Memory Map for the STM32F407 Implementation 
Below is a summary of the details of how the MMBasic firmware makes use of the available resources on the 
STM32F407 chip. This detail is not really needed to use MMBasic but may be of interest if you want to dig 
deeper. The summary is derived from the STM32F407 Reference Manual (RM0090) and the MMBasic source 
code.Also the STM32F407 Datasheet 
The STM32F407 chip used has 192K of RAM, 512K of Flash , 4K of battery backed RAM and 20 32 bit RTC 
registers that are utilised. All the Ram, Flash and peripherals of the STM32F407 are mapped to a 32 bit address 
space. The table below lists the relevant address ranges for the MMBasic implementation. 
 

Address Range (hex) Type Size Usage/Detail 

6000 0000 – FFFF FFFF   Reserved for use interannly by the chip. See data sheet for 
details.  

4000 0000 - 5FFF FFFF Registers 
Peripherals 

 This addess range allows access to the registers that control 
the various functions. Eg. GPIO, ADC, Timers, SPI, DAC, 
USART, I2C. MMBasic takes care of all this, however it is 
possible to PEEK and POKE these registers. 

4002 4000 – 4002 4FFF Battery  
Backed 
Ram 

4K This Ram is battery backed up if a battery is connected to 
VBAT. MMBasic Saved Variables stored here.  i.e.  
VAR SAVE, VAR RESTORE, VAR CLEAR commands 
control this area. Usage reported by the MMBasic  
Memory Command 

4000 2800 – 4000 2BFF 
 
4000 2850 – 4000 289C 

RTC_BKP 
Registers 
80 bytes 

20 X 
32 bit 

80 bytes used for Options, permanent options are stored 
here. See Option Settings  PEEK(BYTE &H40002850) will 
return the byte of the first option i.e. OPTION AUTORUN 

2000 0000 - 2001 FFFF Ram 128K This is MMBasic’s memory. This is where a MMBasic 
program stores its variables and where it gets any memory it 
needs. Nominally 114K is available, but the whole 128K 
can be seen if OPTION CONTROLS 0 is entered and the 
memory reserved for GUI controls is returned. Usage 
reported by the MMBasic Memory Command 

1000 0000 – 1000 FFFF SRAM 64K SRAM used by MMBasic Firmware for its own variables,  
C stack, buffers, command history etc. 

0806 0000 - 0807 FFFF Flash 128K Used by MMBasic to store MMBasic programs. 
Usage reported by the MMBasic Memory Command 

0800 0000 - 0805 FFFF Flash 384K First 384K of 512K of Flash. Used to store the MMBasic 
Firmware. 

0000 0000 – 000F FFFF Ram/Flash   Mapped to various Ram and Flash addresses used by the 
chip. Not used by MMBasic. 

 
 
 
 

https://www.st.com/resource/en/reference_manual/dm00031020-stm32f405-415-stm32f407-417-stm32f427-437-and-stm32f429-439-advanced-arm-based-32-bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/datasheet/stm32f405vg.pdf


Page 121             Armmite F4 User Manual Page 121 

Startup and Reset – Quick Reference 
Detailed Listing 
This table provides a quick reference to the various start up and reset modes available for MMBasic and the 
Armmite F4. 

Operation Details 

Normal 
Startup 

A normal start up is initiated by power being applied, the RST button being pressed or the 
CPU RESTART command. 
Each of these will cause MMBasic to restart. It will look for some key Options to be set 
which indicate that the options have been previously saved and are valid. e.g. checks Baudrate 
is not 0, that a TAB option is set. If the options pass this integrity check then MMBasic is 
started using these previously saved Options.  
If the Options are see as not yet set, then the default Options are loaded. This would be the 
case if the backup memory has never been used, the backup battery is flat or removed. 
The MM.STARTUP routine is searched for and if found any code in it is then executed. 
If  OPTION AUTORUN ON is set then any program in the program memory is run, 
otherwise the command prompt is shown. 

Set Default 
Options 

The default Options are set as above if the Options are not deemed valid at startup. 
The OPTION RESET command will also set the default Options. 
This means the USB Console is enabled, The Serial Console is disabled and the ILI9341_16 
LCD and TOUCH are enabled. 
MMbasic will restart to the command prompt. 

MMBasic 
Reset 

This will clear any save variables in the battery backed RAM, set the default Options and 
clear the program memory. This is achieved by initiating a restart with Key 1 held down or 
PE3 connected to Gnd. 
Setting the default options means the USB Console, LCD and Touch as above will be 
initiated. 

Serial Console 
Startup 

Holding Key 0 or connecting PE4 to Gnd while initiating a restart will enable the Serial 
Console and disable the USB Console. 

Firmware 
Upgrade 

Loading new firmware will not clear the stored varaibles or the program memory or change 
the Options. 
Connecting BT0 to 3.3v and restarting will put the Armmite in the bootloader mode, ready to 
accept new firmware. 

Startup with 
Embedded 
Option 
Commands 

See the section  Running Armmite F4 without Backup Battery for details. This is used to run 
the Armmite F4 without a backup battery. At first startup the default options are set. The main 
program has OPTION commands embedded at the start of the ptogram, these are not saved 
and no restart occurs until the  OPTION SAVE command is found. These Options can include  
OPTION LCDPANEL etc commands that are not normally allowed in a program. Once the 
OPTION SAVE is reached MMBasic is restarted with the new options. If the MM.STARTUP 
routine includes OPTION AUTORUN ON the main program is executed again. On this 
restart the OPTIONs are skipped and the rest of the program is run. 

 
 



Page 122             Armmite F4 User Manual Page 122 

Operators and Precedence 
Detailed Listing 
The following operators are listed in order of precedence.  Operators that are on the same level (for example + 
and -) are processed with a left to right precedence as they occur on the program line. 

Numeric Operators (Float or Integer) 
 

NOT   INV NOT will invert the logical value on the right. 
INV will perform a bitwise inversion of the value on the right. 
Both of these have the highest precedence so if the value being operated on is an 
expression it should be surrounded by brackets.  For example, 
            IF NOT (A = 3 OR A = 8) THEN … 

^ Exponentiation (eg, b^n means bn) 
*    /   \    MOD Multiplication, division, integer division and modulus (remainder) 
+  - Addition and subtraction 
x <<  y     x >> y These operate in a special way.  << means that the value returned will be the 

value of x shifted by y bits to the left while >> means the same only right 
shifted.  They are integer functions and any bits shifted off are discarded.  For a 
right shift any bits introduced are set to the value of the top bit (bit 63).  For a 
left shift any bits introduced are set to zero. 

<>    <    >    <=    =<    >=    
=> 

Inequality, less than, greater than, less than or equal to, less than or equal to 
(alternative version), greater than or equal to, greater than or equal to (alternative 
version) 

= Equality (also used in assignment to a variable, eg implied LET). 
AND    OR    XOR Conjunction, disjunction, exclusive or. 

These are bitwise operators and can be used on 64-bit unsigned integers. 

The operators AND, OR and XOR are integer bitwise operators.  For example PRINT (3 AND 6) will output 2. 
The other logical operations result in the integer 0 (zero) for false and 1 for true.  For example the statement  
PRINT 4 >= 5 will print the number zero on the output and the expression A = 3 > 2 will store +1 in A. 
 

String Operators 
 

+ Join two strings 
<>    <    >    <=    =<    >=    
=> 

Inequality, less than, greater than, less than or equal to, less than or equal to 
(alternative version), greater than or equal to, greater than or equal to (alternative 
version).   

= Equality  
 
String comparisons  respect the case of the characters (ie "A" is greater than "a"). 
 



Page 123             Armmite F4 User Manual Page 123 

Predefined Read Only Variables 
Detailed Listing 
These variables are set by MMBasic and cannot be changed by the running program. 



Page 124             Armmite F4 User Manual Page 124 

MM.CMDLINE$ 
MM.CMDLINE$ 

This constant variable containing any command line arguments passed to 
the 
current program is automatically created when an MMBasic program runs; 
see RUN and * commands for details. 
• Programs run from the Editor or using OPTION AUTORUN will set 
MM.CMDLINE$ to the empty string. 
• If not required this constant variable may be removed from memory 
using ERASE MM.CMDLINE$ 

MM.DEVICE$ 
MM.DEVICE$ 

A string representing the device or platform that MMBasic is running on.  
Currently this variable will contain one of the following: 
"Maximite" on the standard Maximite and compatibles.   
"Colour Maximite" on the Colour Maximite and UBW32.   
"Colour Maximite 2" on the Colour Maximite 2.   
"DuinoMite" when running on one of the DuinoMite family.   
"DOS" when running on Windows in a DOS box.   
"Generic PIC32" for the generic version of MMBasic on a PIC32.   
"Micromite" on the PIC32MX150/250   
"Micromite MkII" on the PIC32MX170/270   
"Micromite Plus" on the PIC32MX470   
"Micromite Extreme" on the PIC32MZ series   
"ARMmite H7" on the ArmmiteH7   
"ARMmite F407" on the ArmmiteF4   
"ARMmite L4" with chip no. and pin count appended on the ArmmiteL4   
“PicoMite” on the Raspberry Pi Pico   
"PicoMiteVGA"  on the Raspberry Pico VGA Edition  
“MMBasic for Windows” on the windows version  

MM.FONTHEIGHT 
MM.FONTWIDTH 
MM.FONTHEIGHT  
MM.FONTWIDTH 

Integers representing the height and width of the current font (in pixels). 
 
Allowed syntax but saved as MM.INFO(FONTHEIGHT) 
Allowed syntax but saved as MM.INFO(FONTWIDTH) 

MM.HPOS 
MM.HPOS  
MM.VPOS 

The current horizontal and vertical position (in pixels) following the last 
graphics command. 

MM.HRES 
MM.VRES 
MM.HRES  
MM.VRES 

Integers representing the horizontal and vertical resolution of the LCD 
display panel (if configured) in pixels. 

MM.I2C 
MM.I2C 

Following an I2C write or read command this integer variable will be set to 
indicate the result of the operation as follows: 

0 = The command completed without error. 
1 = Received a NACK response 

             2 = Command timed out 
 

MM.INFO$ 
MM.INFO 
 
 
 
MM.INFO$(AUTORUN 
MM.INFO$(AUTORUN) 
 
MM.INFO$(CONSOLE 
MM.INFO (CONSOLE) 
 
 
 
 
 
MM.INFO$(CPUSPEED 
MM.INFO$(CPUSPEED) 
 
MM.INFO$(DEVICE 
MM.INFO$(DEVICE) 
 

These two versions can be used interchangeably but good programming 
practice would require that you use the one corresponding to the returned 
datatype. 
 
Returns “On” or “Off” depending on the status of OPTION AUTORUN 
 
Returns “NOCONSOLE” if OPTION LCDPANEL NOCONSOLE is set. 
Returns “CONSOLE” if OPTION LCDPANEL CONSOLE is set. Can be 
used in a program to determine if the the LCDPanel is being used as the 
console. 
 
Returns the CPU speed as a string 
 
 
Returns a string representing the device or platform that MMBasic is running 
on.  See MM.DEVICE$ above. 
 



Page 125             Armmite F4 User Manual Page 125 

 

MM.ERRMSG$ 
MM.ERRNO 
MM.ERRNO  
MM.ERRMSG$ 
 

If a statement caused an error which was ignored these variables will be set 
accordingly.  MM.ERRNO is a number where non zero means that there was 
an error and MM.ERRMSG$ is a string representing the error message that 
would have normally been displayed on the console.  They are reset to zero 
and an empty string by RUN, ON ERROR IGNORE or ON ERROR SKIP. 

MM.ERRMSG$  - SDCARD related 
MM.ERRNO       - SDCARD related 
MM.ERRNO 
MM.ERRMSG$ 

If a statement involving the SD card fails MM.ERRNO and MM.ERRMSG$ 
are set. They are reset to zero and an empty string by RUN, ON ERROR 
IGNORE or ON ERROR SKIP.The possible values for MM.ERRNO and 
associated MM.ERRMSG$ are: 

 
         1  = Low level I/O error 
         2  = Assertion failed 
         3  = SD Card not found 
         4  =  Could not find the file 
         5  =  Could not find the path 
         6  =  The path name format is invalid 
         7  =  Prohibited access or not empty 
         8  =  Exists or path to it not found 
         9  =  The file/directory is invalid        1 
        10 =  SD Card is write protected 
        11 =  The drive number is invalid 
        12 =  The volume has no work area 
        13 =  Not A FAT volume 
        14 = Format aborted 
        15 = Could not access volume 
        16 = File sharing policy 
        17 =  Buffer could not be allocated 
        18 =  Too many open files 
        19 =  Parameter is invalid 
        20 =  SD card not present 

 
 

MM.ONEWIRE 
MM.ONEWIRE 

Following a 1-Wire reset function this integer variable will be set to indicate 
the result of the operation as follows: 

0 = Device not found. 
1 = Device found 

MM.VER 
MM.VER 

The version number of the firmware as a floating point number in the form 
aa.bbcc where aa is the major version number, bb is the minor version 
number and cc is the revision number.  For example version 5.03.00 will 
return 5.03 and version 5.03.01 will return 5.0301. 

MM.WATCHDOG 
MM.WATCHDOG 

An integer which is true if MMBasic was restarted as the result of a 
Watchdog timeout (see the WATCHDOG command).  False if MMBasic 
started up normally. 



Page 126             Armmite F4 User Manual Page 126 

Option Settings 
Detailed Listing 
This table lists the various option commands which can be used to configure MMBasic and change the way it 
operates.  Options that are marked as permanent will be saved in non volatile memory and automatically 
restored when the Armmite F4 is restarted.  Options that are not permanent will be reset on startup. 

Permanent? 



Page 127             Armmite F4 User Manual Page 127 

ANGLE 
OPTION ANGLE 
RADIANS | DEGREES 
 

 This command switches trig functions between degrees and 
radians. Acts on SIN, COS, TAN, ATN, ATAN2, MATH ATAN3, 
ACOS, ASIN 

AUTORUN 
OPTION AUTORUN OFF | ON 
  

 Instruct MMBasic to automatically run the program stored in flash 
when it starts up or is restarted by the WATCHDOG command.  This 
is turned off by the NEW and LIBRARY SAVE commands but other 
commands that might change program memory (EDIT, etc) do not 
change this setting. 
Entering the break key (default CTRL-C) at the console will interrupt 
the running program and return to the command prompt despite this 
option. 

BASE 
OPTION BASE 0 | 1 
 

 Set the lowest value for array subscripts to either 0 or 1. 
This must be used before any arrays are declared and is reset to the 
default of 0 on power up. 

BAUDRATE 
OPTION BAUDRATE nbr 
  

 
 

Set the baud rate for the console to 'nbr'.  This change is made 
immediately and will be remembered even when the power is cycled.  
The baud rate should be limited to the speeds listed in Appendix A for 
COM1.  
Using this command it is possible to set the console to an unworkable 
baud rate and in this case MMBasic should be reset as described in the 
chapter "Resetting MMBasic".  This will reset the baud rate to the 
default of 11520 

BREAK 
OPTION BREAK nn 

 Sets the value of the break key to the ASCII value 'nn'.  This key is 
used to interrupt a running program. The value of the break key is set 
to CTRL-C key at power up but it can be changed to any keyboard key 
using this command (for example, OPTION BREAK 4 will set the 
break key to the CTRL-D key). Setting this option to zero will disable 
the break function entirely. It is not permanent and must be included in 
the program. It has no affect at the command line. 

CASE 
OPTION CASE 
UPPER | LOWER | TITLE  

 
 

Change the case used for listing command and function names when 
using the LIST command.  The default is TITLE but the old standard 
of MMBasic can be restored using OPTION CASE UPPER. 
This option will be remembered even when the power is removed. 

COLOURCODE 
OPTION COLOURCODE OFF 
or 
OPTION COLOURCODE ON 
  

 
 

Turn on or off colour coding for the editor's output.  Keywords will be 
in cyan, numbers in red, etc.  The default is OFF. 
Notes: 
 Colour coding requires a terminal emulator that can interpret the 

appropriate escape codes.  It works correctly with Tera Term 
however,  Putty needs its default background colour to be changed 
to white. 

 If colour coding is used it is recommended that the baud rate for 
the serial console be set to a high speed. 

The keyword COLORCODE (USA spelling) can also be used. 
CONTROLS 
OPTION CONTROLS nn   Set the maximum number of controls that can be created by a program 

to 'nn'.  This can be any number from 1 to 1000.  The default is 200.  A 
larger number will use more RAM (each control entry uses about 50 
bytes of RAM). 
This command can only be run from the command line and the new 
value will remembered, even when the power is cycled or a new 
program loaded. 
Changing this option initiates a restart automatically 

DEFAULT 
OPTION DEFAULT FLOAT | 
INTEGER | STRING | NONE  

 Used to set the default type for a variable which is not explicitly 
defined. 
If OPTION DEFAULT NONE is used then all variables must have 
their type explicitly defined. 
When a program is run the default is set to FLOAT for compatibility 
with previous versions of MMBasic. 

DISPLAY 
OPTION DISPLAY lines [,chars]  Set the characteristics of the display terminal used for the console.  

Both the LIST and EDIT commands need to know this information to 
correctly format the text for display. 
'lines' is the number of lines on the display and 'chars' is the width of 

http://geoffg.net/terminal.html


Page 128             Armmite F4 User Manual Page 128 

OPTION MILLISECONDS ON  The time$ function returns the time as “HH:MM:SS.MMM” 

OPTION SERIAL CONSOLE 
OFF  

 
Disable the serial console.  When the console is disabled (the default) 
the serial port can be opened as COM1 and the console is restored to 
the USB. This command can only be run from the command line and 
will cause a restart. 
 

PIN 
OPTION PIN nbr 
  

 Set 'nbr' as the PIN (Personal Identification Number) for access to the 
console prompt.  'nbr' can be any non zero number of up to eight digits. 
Whenever a running program tries to exit to the command prompt for 
whatever reason MMBasic will request this number before the prompt 
is presented.  This is a security feature as without access to the 
command prompt an intruder cannot list or change the program in 
memory or modify the operation of MMBasic in any way.  To disable 
this feature enter zero for the PIN number (ie,  OPTION PIN 0).   
A permanent lock can be applied by using 99999999 for the PIN 
number. 
If a permanent lock is applied or the PIN number is lost the only way 
to recover is to reset MMBasic as described in the section  
Resetting MMBasic  (this will also erase the program memory). 

RESET 
OPTION RESET  Reset all saved options (including the PIN) to the default values. 

Restores these two options on the Armmite F4 
OPTION LCDPANEL ILI9341_16, RLANDSCAPE                                
OPTION TOUCH PB12, PC5 

RTC 
OPTION RTC CALIBRATE ±n   Used to calibrate the battery backed Real Time Clock that keeps time 

in the Armmite F4.  
'n' is a number between -511 and + 512. A change of ±1 should equate 
to about 0.0824 seconds per day.  Negative numbers will slow the 
clock down, positive will speed it up (different from the Micromite). 
This setting is remembered even after a firmware upgrade. 

SERIAL CONSOLE 
OPTION SERIAL CONSOLE 
ON 

 Enable the serial console.  When the serial console is enabled COM1 is 
not available. 
This command can only be run from the command line and will cause a 
restart so if the command was issued via the USB console the connection 
will be lost and will need to be re-established.  The new value will 
remembered, even when the power is cycled or a new program loaded. 
. 



Page 129             Armmite F4 User Manual Page 129 

   

SERIAL PULLUP 
OPTION SERIAL PULLUP 
ENABLE 
 
OPTION SERIAL PULLUP 
DISABLE 
 

 Permanently stored option that enables pullup resistors on receive line 
(RX) of all serial ports including the serial console. The default is 
enabled. 
 
Disables pullups on all serial ports 
Switching between these options initiates a restart automatically. 

TAB 
OPTION TAB 2 | 4 | 8   Set the spacing for the tab key.  Default is 2.  

This option will be remembered even when the power is removed. 
TOUCH 
OPTION TOUCH T_CS pin, 
T_IRQ pin  
 
OPTION TOUCH PB12, PC5 
 
 
 
OPTION TOUCH DISABLE 

 Configures the Armmite F4 to suit the touch sensitive feature of an 
attached LCD panel. 
'T_CS pin' and 'T_IRQ pin' are hardwired and must be PB12 for T_CS 
and PC5 for T_IRQ for the 16 bit displays using the FSMC connector. 
It is possible to use other pins for the SPI displays if desired.  This 
command only needs to be run once as the parameters are stored in non 
volatile memory.  Every time the Armmite is restarted MMBasic will 
automatically initialise the touch controller.  
 
 If the touch facility is no longer required, the command OPTION 
TOUCH DISABLE can be used to disable the touch feature and return 
the I/O pins for general use. 

VCC 
OPTION VCC voltage   Specifies the voltage (Vcc)  supplied to the STM32 chip.  When using 

the analog inputs to measure voltage the STM32 chip uses its supply 
voltage (Vcc) as its reference.  This voltage can be accurately 
measured using a DMM and configured using this command to allow 
for a more accurate measurement. 
The parameter is not saved and should be initialised either on the 
command line or in a program.  The default if not set is 3.3. 
 



Page 130             Armmite F4 User Manual Page 130 

Commands 
Detailed Listing 
Square brackets indicate that the parameter or characters are optional. 

‘ (single quotation mark) 
‘ (single quotation mark) 

Starts a comment and any text following it will be ignored.  Comments can 
be placed anywhere on a line. 

*file 
*file [options] 
 

The star/asterisk command is a shortcut for RUN that may only be used at 
the MMBasic prompt. e.g. 
* RUN 
*foo RUN "foo" 
*"foo bar" RUN "foo bar" 
*foo –wombat RUN "foo", "--wombat" 
*foo "wom" RUN "foo", CHR$(34) + "wom" + CHR$(34) 
*foo --wom="bat" RUN "foo","--wom=" + CHR$(34) + "bat" + CHR$(34) 
String expressions are not supported/evaluated by this command; any 
arguments provided are passed as a literal string to the RUN command 
See RUN command for further detail. 

? (question mark) 
? (question mark) 

Shortcut for the PRINT command. 

ADC 
ADC 

The ADC functionality can capture up to 3 channels of analog data in the 
background at up to 500KHz per channel with user selectable triggering. 

ADC OPEN frequency, 
channel1-pin [,channel2-pin] 
[,channel3-pin] [, interrupt] 
 

Open the ADC channels. "frequency" is the sampling frequency in Hz. 
Above 320KHz the conversion is 8-bits per channel 
Above 160KHz to 320KHz the conversion is 10-bits per channel 
From 160KHz and below the conversion is 12-bits per channel 
This is automatically applied in the firmware. 
 
'channel1-pin' can be one of PC0,PC3,PA0,PA1,PA2,PA3,PA6,PA7,PB0 
[15,18,23,24,25,26,31,32,35]  *** PB0 [35] not available on VET6 as it is the 
Flash CS pin. Can be used on the VET6 Mini. 
'channel2-pin' must be PC2 [17] 
'channel3-pin' can be one of PC1,PC4,PC5 [16,33,34] 
'interrupt' is a normal MMBasic subroutine that will be called when the 
conversion completes. 

ADC FREQUENCY 
frequency 
 

Allows the ADC frequency to be adjusted after the ADC START command. 
This command is only valid if the number of bits calculated in the table above 
does not change. 

ADC TRIGGER channel, level 
 

Sets up triggering of the ADC. This should be specified before the ADC 
START command.  
The 'channel' can be a number between one and three depending on the 
number of pins specified in the ADC OPEN command. 
The 'level' can be between -VCC and VCC.  A positive number indicates that 
the trigger will be on a positive going transition through the specified voltage. 
A negative number indicates a negative going transition through the specified 
voltage. 



Page 131             Armmite F4 User Manual Page 131 

ADC START channel1array!() 
[,channel2array!()] 
[,channel3array!()] 
 

Starts ADC conversion. The floating point arrays must be the same size and 
their size will determine the number of samples. 
Once the start command is issued the ADC(s) will start converting the input 
signals into the arrays at the frequency specified. 
If the OPEN command includes an interrupt, then the command will be non-
blocking. If an interrupt is not specified, the command will be blocking until 
the array is filled. 
The samples are returned as floating point values between 0 and VCC.  

ADC CLOSE Closes the ADC and returns the pins to normal use 

ARC 
ARC x, y, r1, [r2], rad1, rad2, 
colour 
 

Draws an arc of a circle or a given colour and width between two radials 
(defined in degrees).  Parameters for the ARC command are: 

'x' is the X coordinate of the centre of arc. 
'y' is the Y coordinate of the centre of arc. 
'r1' is the inner radius of the arc. 
'r2' is the outer radius of the arc - can be omitted if 1 pixel wide. 
'rad1' is the start radial of the arc in degrees. 
'rad2' is the end radial of the arc in degrees. 
'colour' is the colour of the arc. 

AUTOSAVE 
AUTOSAVE 
or 
AUTOSAVE CRUNCH 

Enter automatic program entry mode. This command will take lines of text 
from the console serial input and save them to memory.   

This mode is terminated by entering Control-Z or F1 which will then cause 
the received data to be saved into program memory overwriting the previous 
program. Use F2 to exit and immediately run the program. 

The CRUNCH option instructs MMBasic to remove all comments, blank 
lines and unnecessary spaces from the program before saving. This can be 
used on large programs to allow them to fit into limited memory.  CRUNCH 
can be abbreviated to the single letter C. 

At any time, this command can be aborted by Control-C which will leave 
program memory untouched. 

This is one way of transferring a BASIC program into the Armmite.  The 
program to be transferred can be pasted into a terminal emulator and this 
command will capture the text stream and store it into program memory. It 
can also be used for entering a small program directly at the console input. 

BACKLIGHT 
BACKLIGHT 
percentage%[,S|,R] 
 

Sets to intensity of the backlight on LCD Display by either sending a 
command to the SSD1963 panels or changing the PWM signal to the BL pin 
on the other LCD Displays 

0 is off, 100 is full intensity for most displays. This may be reversed for some 
displays depending on how the LED driver is implemented. A value 
somewhere between can be used to minimise power drawn while still giving 
a readable display. 

The option S parameter will also update the default value which is then used 
at any future restarts or power ups. 

The option R parameter will also set the default value which is then used at 
any future restarts or power ups, but will also indicate that the backlight is to 
produce the reverse order for brightness. i.e. 0-100 produces a 100-0 output. 
This can be used to correct the brightness progression where the backlight 
driver of a particular display expects a reverse pwm signal and would other 
wise show 100% as OFF and 0% and ON.  

BEZIER Draws a cubic Bezier curve by specifying the start and end points and two 



Page 132             Armmite F4 User Manual Page 132 

BEZIER xs, ys, xc1, yc1, xc2, 
yc2, xe, ye, colour 
 

control points. Parameters for the BEZIER command are:  
xs: X coordinate of start point 
ys: Y coordinate of start point 
xc1: X coordinate of first control point 
yc1: Y coordinate of first control point 
xc2: X coordinate of second control point 
yc2: Y coordinate of second control point 
xe: X coordinate of end point 
ye: Y coordinate of end point 
colour: Colour of curve 

BITBANG BITSTREAM 
BITBANG BITSTREAM 
pinno, n_transitions, array%()  
 

This command is used to generate an extremely accurate bit sequence on the  

pin specified. The pin must have previously been set up as an output and set   

to the required starting level.    

Notes:  

 The array contains the length of each level in the bitstream in 
microseconds. The maximum period allowed is 65.5 mSec   

 The first transition will occur immediately on executing the 
command.   

 The last period in the array is ignored other than defining the time 
before control returns to the program or command line.    

 The pin is left in the starting state if the number of transitions is even 
and the opposite state if the number of transitions is odd.   

BITBANG HUMID 
BITBANG HUMID pin, tvar, 
hvar[,version] 

Returns the temperature and humidity using the DHT22 or DHT11 sensor.  
Alternative versions of the DHT22 are the AM2303 or the RHT03 (all are 
compatible). 
'pin' is the I/O pin connected to the sensor.  Any I/O pin may be used. 
'tvar' is the variable that will hold the measured temperature and 'hvar' is the 
same for humidity.  Both must be present and both must be floating point 
variables. 
Valid codes for version are: 
1= DHT11 
0 or omitted = DHT22 
For example:     HUMID 2, TEMP!, HUMIDITY!,1 
Temperature is measured in ºC and the humidity is percent relative humidity.  
Both will be measured with a resolution of 0.1.  If an error occurs (sensor not 
connected or corrupt signal) both values will be 1000.0. 
Normally the signal pin of the DHT22 should be pulled up by a 1K to 10K 
resistor (4.7K recommended) to the supply voltage.  

BITBANG LCD 
BITBANG LCD INIT d4, d5, 
d6, d7, rs, en 
or 
BITBANG LCD line, pos, 
text$ 
or 
BITBANG LCD CLEAR 
or 

Display text on an LCD character display module.  This command will work 
with most 1-line, 2-line or 4-line LCD modules that use the KS0066, 
HD44780 or SPLC780 controller (however this is not guaranteed). 
The LCD INIT command is used to initialise the LCD module for use.  'd4' to 
'd7' are the I/O pins that connect to inputs D4 to D7 on the LCD module 
(inputs D0 to D3 should be connected to ground).  'rs' is the pin connected to 
the register select input on the module (sometimes called CMD).  'en' is the 
pin connected to the enable or chip select input on the module.  The R/W 
input on the module should always be grounded.  The above I/O pins are 
automatically set to outputs by this command. 



Page 133             Armmite F4 User Manual Page 133 

BITBANG LCD CLOSE When the module has been initialised data can be written to it using the LCD 
command.  'line' is the line on the display (1 to 4) and 'pos' is the character 
location on the line (the first location is 1).  'text$' is a string containing the 
text to write to the LCD display. 
'pos' can also be C8, C16, C20 or C40 in which case the line will be cleared 
and the text centred on a 8 or 16, 20 or 40 line display.  For example:  
             LCD 1, C16, "Hello" 

LCD CLEAR will erase all data displayed on the LCD and LCD CLOSE will 
terminate the LCD function and return all I/O pins to the not configured state. 
See the chapter  LCD Display for more details. 

BITBANG LCD CMD d1 [, 
d2 [, etc]] 
or 
BITBANG LCD DATA d1 [, 
d2 [, etc]] 

These commands will send one or more bytes to an LCD display as either a 
command (LCD CMD) or as data (LCD DATA).  Each byte is a number 
between 0 and 255 and must be separated by commas.  The LCD must have 
been previously initialised using the LCD INIT command (see above). 
These commands can be used to drive a non standard LCD in "raw mode" or 
they can be used to enable specialised features such as scrolling, cursors and 
custom character sets.  You will need to refer to the data sheet for your LCD 
to find the necessary command and data values. 

BITBANG WS2812 
BITBANG WS2812 type, pin, 
nbr, value%[()] 

This command outputs the required signals to drive one or more WS2812 
LED chips connected to 'pin'. Note that the pin must be set to a digital output 
before this command is used. 

 'type' is a single character specifying the type of chip being driven: 
O = original WS2812 
B = WS2812B 
S = SK6812  

             W=SK6812 RGBW Leds 
‘nbr ’ is the number of LEDs in the chain (1 to 256).  The 'value%()' array         
should be an integer array sized to have exactly the same number of                     
elements as the number of LEDs to be driven. Each element in the array              
should contain the colour in the normal RGB888 format (i.e. 0 to                         
&HFFFFFF).  For the SK6812 RGBW put the white value in bits 24-31. 
e.g. &HFF000000 
If only one LED is connected then a single integer should be                                
used for value% (ie, not an array).   
dim b%(6)=(rgb(red), rgb(green), rgb(blue), rgb(Yellow), rgb(cyan), 
rgb(magenta), rgb(white)) 
setpin 1,dout 
ws2812 1,7,b%() 
will output the specified colours to an array of 7 WS2812 LEDs 
Note: All interrupts are turned off during transmission to achieve the sub 
microsecond timings required. The 256 limit is nominal and using a high 
number of LEDs may cause unforeseen issues with missed interrupts. 

BLIT 
BLIT READ [#]b, x, y, w, h  
 
 
 
 
BLIT WRITE [#]b, x, y,w,h 
 

Copy one section of the display screen to or from a memory buffer. 

BLIT READ will copy a portion of the display to the memory buffer '#b'.  
The source coordinate is 'x' and 'y' and the width of the display area to copy is 
'w' and the height is 'h'.  When this command is used the memory buffer is 
automatically created and sufficient memory allocated.  This buffer can be 
freed and the memory recovered with the BLIT CLOSE command.  

BLIT WRITE will copy from the memory buffer '#b' to the display.  The 
destination coordinate is 'x' and 'y' and the width and height use the passed 



Page 134             Armmite F4 User Manual Page 134 

 
BLIT CLOSE [#]b 
 

parameters.  

BLIT CLOSE will close the memory buffer '#b' to allow it to be used for 
another BLIT READ operation and recover the memory used.  

Notes: 
 Sixty four buffers are available ranging from #1 to #64. 
 When specifying the buffer number the # symbol is optional. 
 All other arguments are in pixels.  

 

BLIT x1, y1, x2, y2, w, h Copy one section of the display screen to another part of the display. 
The source coordinate is 'x1' and 'y1'.  The destination coordinate is 'x2' and 
'y2'.  The width of the screen area to copy is 'w' and the height is 'h'.   
All arguments are in pixels and the source and destination can overlap.  

 

BOX 
BOX  x,  y,  w,  h  [, lw]  [,c] 
[,fill] 
 

Draws a box on the LCD display with the top left hand corner at 'x' and 'y' 
with a width of 'w' pixels and a height of 'h' pixels.   
'lw' is the width of the sides of the box and can be zero.  It defaults to 1. 
'c' is the colour and defaults to the default foreground colour if not specified. 
'fill' is the fill colour.  It can be omitted or set to -1 in which case the box will 
not be filled. 
All parameters can be expressed as arrays and the software will plot the 
number of boxes as determined by the dimensions of the smallest array. 'x', 
'y', 'w', and 'h' must all be arrays or all be single variables /constants 
otherwise an error will be generated. 'lw', 'c', and fill can be either arrays or 
single variables/constants. 
See the chapter "Basic Drawing Commands" for a definition of the colours 
and graphics coordinates. 

CALL 
CALL usersubname$ 
[,usersubparameters,….] 

This is an efficient way of programmatically calling user defined subroutines  
(see also the CALL() function). In many case it can allow you to get rid of  
complex SELECT and IF THEN ELSEIF ENDIF clauses and is processed in  
a much more efficient way. 
The “usersubname$” can be any string or variable or function that resolves to 
the name of a normal user subroutine (not an in-built command).  The                
“usersubparameters” are the same parameters that would be used to call the          
subroutine directly.  A typical use could be writing any sort of emulator                
where one of a large number of subroutines should be called depending on                
some variable.  It also allows a way of passing a subroutine name to another      
subroutine or function as a variable. 

CAT 
CAT S$, N$ 

CAT S$, N$ appends N$ to S$.  This is functionally the  same a S$ = S$ + 
N$ but operates faster.   
CAT is an alias for the INC command and is stored internally as the INC 
command and will show in the program as INC. 
 

CHDIR 
CHDIR dir$ 

Change the current working directory on the SD card to ‘dir$’ 
The special entry “..” represents the parent of the current directory and “.” 
represents the current directory.  "/" is the root directory. 

CIRCLE 
CIRCLE  x,  y,  r  [,lw]  [, a]  [, 
c]  [, fill] 

Draw a circle on the video output centred at 'x' and 'y' with a radius of 'r' on 
the LCD display. ‘lw’ is optional and  is the line width (defaults to 1).  'c' is 
the optional colour and defaults to the current foreground colour if not 
specified.  



Page 135             Armmite F4 User Manual Page 135 

The optional 'a' is a floating point number which will define the aspect ratio.  
If the aspect is not specified the default is 1.0 which gives a standard circle 
'fill' is the fill colour.  It can be omitted or set to -1 in which case the circle 
will not be filled. 
All parameters can be expressed as arrays and the software will plot the 
number of circles as determined by the dimensions of the smallest array. 'x', 
'y' and 'r' must all be arrays or all be single variables /constants otherwise an 
error will be generated. 'lw', 'a', 'c', and fill can be either arrays or single 
variables/constants. 
See the chapter "Basic Drawing Commands" for a definition of the colours 
and graphics coordinates. 

CLEAR 
CLEAR 

Delete all variables and recover the memory used by them. 

CLOSE 
CLOSE [#]nbr [,[#]nbr] … 

Close the file(s) previously opened with the file number ‘#fnbr’ 
Close the serial communications port(s) previously opened with the file 
number ‘nbr’.  The # is optional.  Also see the OPEN command. 
The text “GPS” can be substituted for [#]nbr to close a communications port 
used for a GPS receiver. 

CLS 
CLS [colour] 

Clears the LCDPANEL  Optionally 'colour' can be specified which will be 
used for the background when clearing the screen. 

COLOUR 
COLOUR fore [, back] 
or 
COLOR fore [, back] 

Sets the default colour for commands (TEXT  etc) that display on the on the 
LCDPANEL and accept a background or foreground colour parameter..  'fore' 
is the foreground colour, 'back' is the background colour.  The background is 
optional and if not specified will default to black. 

CONST 
CONST id = expression  
 [, id = expression] … etc 

Create a constant identifier which cannot be changed once created. 
'id' is the identifier which follows the same rules as for variables.  The 
identifier can have a type suffix (!, %, or $) but it is not required.  If it is 
specified it must match the type of 'expression'.  'expression' is the value of 
the identifier and it can be a normal expression (including user defined 
functions) which will be evaluated when the constant is created. 
A constant defined outside a sub or function is global and can be seen 
throughout the program.  A constant defined inside a sub or function is local 
to that routine and will hide a global constant with the same name. 

CONTINUE 
CONTINUE 

Resume running a program that has been stopped by an END statement, an 
error, or CTRL-C.  The program will restart with the next statement 
following the previous stopping point. 
Note that it is not always possible to resume the program correctly – this 
particularly applies to complex programs with graphics, nested loops and/or 
nested subroutines and functions. 

CONTINUE DO  
or 
CONTINUE FOR 

Skip to the end of a DO/LOOP or a FOR/NEXT loop.  The loop condition 
will then be tested and if still valid the loop will continue with the next 
iteration. 

CPU RESTART 
CPU RESTART 

Will force a restart of the processor.   
This will clear all variables and reset everything (eg, timers, COM ports, I2C, 
etc) similar to a power up situation but without the power up banner.    
If OPTION AUTORUN has been set the program will restart. 

CPU SLEEP 
CPU SLEEP  

The CPU sleeps until there is a signal on the wakeup pin. Pin PA0 is the 
wakeup pin, however any other COUNT pin can also be used to wake the 



Page 136             Armmite F4 User Manual Page 136 

 
CPU SLEEP time 

processor if it is enabled with SETPIN pinno, CIN or PIN or FIN. 
The Armmite uses the RTC to generate an interrupt to wake the processor 
after a period of sleep. Any period can be specified including fractions of 
seconds and because the RTC is used the timing will be accurate. Using the 
embedded ARMMITE F4 date and time functions makes it easy to sleep until 
any particular time. e.g. 
Midnight_tonight% = epoch(date$+” 00:00:00”)+86400  ‘epoch at start of 
day today + secs in a day 
CPU SLEEP Midnight_tonight% - epoch(now) ‘ sleep until midnight tonight 
Note: 
The R21 pullup resistor on the USB D+ data line prevents the CPU SLEEP 
[n] working when using a USB console. See CPU SLEEP time section. 

CFUNCTION 
CFUNCTION name ([type  [, 
type]  …])[type] 
  hex [[ hex[…]  
  hex [[ hex[…]  
END CFUNCTION 

Defines the binary code for an embedded machine code program module 
written in C or ARM assembler. The module will appear in MMBasic as the 
function 'name' and can be used in the same manner as a built-in function. 
Multiple embedded routines can be used in a program with each defining a 
different module with a different 'name'.   
The first 'hex' word must be the offset (in 32-bit words) to the entry point of 
the embedded routine (usually the function main()).  The following hex 
words are the compiled binary code for the module. These are automatically 
programmed into MMBasic when the program is saved. Each 'hex' must be 
exactly eight hex digits representing the bits in a 32-bit word and be 
separated by one or more spaces or new lines. The functions must be 
terminated by a matching END CFUNCTION.   Any errors in the data format 
will be reported when the program is loaded into flash by the RUN command.  
During execution MMBasic will skip over any CFUNCTION/CSUB 
commands so they can be placed anywhere in the program.  
The type of each parameter should be specified in the definition.  
As well as defining the types of the parameters a CFunction can also specify 
the type of the value returned. For example, the following returns a float: 
         CFunction MyFunction ( integer, integer, string) float  
This specifies that there will be three parameters, the first two being integers 
and the third a string and the function will return a float. If type is specified 
then the type of the variables passed is checked and an error given if the 
expected type does not match. 
Note: 

 Up to ten arguments can be specified ('arg1', 'arg2', etc). 
 If a variable or array is specified as an argument the C routine will 

receive a pointer to the memory allocated to the variable or array and 
the C routine can change this memory to return a value to the caller. In 
the case of arrays, they should be passed with empty brackets e.g. 
arg(). In the CFUNCTION/CSUB the argument will be supplied as a 
pointer to the first element of the array.  

 Constants and expressions will be passed to the embedded C routine as 
pointers to a temporary memory space holding the value.  

CSUB 
CSUB name [type  [, type]  
…] 
  hex [[ hex[…]  
  hex [[ hex[…]  
END CSUB 

Defines the binary code for an embedded machine code program module 
written in C or ARM assembler. The module will appear in MMBasic as the 
command 'name' and can be used in the same manner as a built-in command. 
Multiple embedded routines can be used in a program with each defining a 
different module with a different 'name'.   
The first 'hex' word must be the offset (in 32-bit words) to the entry point of 
the embedded routine (usually the function main()).  The following hex 
words are the compiled binary code for the module. These are automatically 



Page 137             Armmite F4 User Manual Page 137 

programmed into MMBasic when the program is saved. Each 'hex' must be 
exactly eight hex digits representing the bits in a 32-bit word and be 
separated by one or more spaces or new lines. The command must be 
terminated by a matching END CSUB.   Any errors in the data format will be 
reported when the program is loaded into flash by the RUN command.  
During execution MMBasic will skip over any CSUB commands so they can 
be placed anywhere in the program.  
The type of each parameter may be specified in the definition. For example:  
                   CSub MySub integer, integer, string 
This specifies that there will be three parameters, the first two being integers 
and the third a string. If type is specified then the type of the variables passed 
is checked and an error given if the expected type does not match. 
Note: 

 Up to ten arguments can be specified ('arg1', 'arg2', etc). 
 If a variable or array is specified as an argument the C routine will 

receive a pointer to the memory allocated to the variable or array and 
the C routine can change this memory to return a value to the caller. In 
the case of arrays, they should be passed with empty brackets e.g. 
arg(). In the CSUB the argument will be supplied as a pointer to the 
first element of the array.  

 Constants and expressions will be passed to the embedded C routine as 
pointers to a temporary memory space holding the value.  

CTRLVAL 
CTRLVAL(#ref) =  

This command will set the value of an advanced control.   

'#ref' is the control's reference number. 

For off/on controls like check boxes it will override any touch input and can 
be used to depress/release switches, tick/untick check boxes, etc.  A value of 
zero is off or unchecked and non zero will turn the control on.  For a LED it 
will cause the LED to be illuminated or turned off.  It can also be used to set 
the initial value of spin boxes, text boxes, etc. 
For example: 
        CTRLVAL(#10) = 12.4 

DAC 
DAC n, voltage 
 
 
DAC START frequency, 
DAC1array%() 
[,DAC2array%()] 
 
 
 
 
 
 
 
 
 

 
DAC STOP  

Sets the DAC channel (1 or 2) to the voltage requested. This command 
cannot be used if the DACs are in use for audio output. 
 
Sets up the DAC to create an arbitrary waveform. DAC1array%() and 
optional DAC2array%() should contain numbers in the range 0-4095 to suit 
the 12-bit DACs.  
Once started the output continues in the background and control returns to 
MMBasic.  
The software automatically and separately uses the number of items in each 
of the arrays to drive the DACs.  
The frequency is the rate at which the DACs change value. The maximum 
frequency is 700KHz.  
As an example if there are 180 items in the array c%() which are displayed at 
a frequency of 100,000 Hz this will give a waveform frequency of 
100,000/180 = 555Hz. If there are 90 items in the array d%() at the same 
frequency of 100,000 Hz this will at the same time produce a waveform 
frequency of 100,000/90 = 1111Hz. 
 
Stops the DAC output and returns the DACs to normal use. 
 



Page 138             Armmite F4 User Manual Page 138 

DATA 
DATA constant[,constant]... 

Stores numerical and string constants to be accessed by READ.   
In general string constants should be surrounded by double quotes (").  An 
exception is when the string consists of just alphanumeric characters that do 
not represent MMBasic keywords (such as THEN, WHILE, etc).  In that case 
quotes are not needed. 
Numerical constants can also be expressions such as 5 * 60. 

DATE$ 
DATE$ = "DD-MM-YY" 
or 
DATE$ = "DD/MM/YY" 

Set the date of the internal clock/calendar. 
DD, MM and YY are numbers, for example:   DATE$ = "28-7-2024"   
The year can be abbreviated to two digits (ie, 24). 
The date is set to "01-01-2000" on first power up but the date will be 
remembered and kept updated as long as the battery is installed and can 
maintain a voltage of over 2.5VThe firmware looks for a date > 2018 before 
it allows the clock to run without reset on restart. Otherwise the firmware 
can't know that the clock has been properly initialised.  

DEFINEFONT 
DEFINEFONT #n 
    hex [[ hex[…] 
    hex [[ hex[…] 
END DEFINEFONT 

This will define an embedded font which can be used exactly same as the 
built in fonts (ie, selected using the FONT command or specified in the 
TEXT command). 
MMBasic must execute the font in order for it to be loaded.  '#n' is the font's 
reference number (1 to 16).  It can be the same as an existing font (except 
fonts 1, 6 and 7) and in that case it will replace that font. 
Each 'hex' must be exactly eight hex digits and be separated by spaces or new 
lines from the next.  Multiple lines of 'hex' words can be used with the 
command terminated by a matching END DEFINEFONT. 

DHT22 
DHT22 

See the BITBANG HUMID command which replaces the DHT22 command. 

DIM 
DIM [type] decl [,decl]...  
where 'decl' is: 
var [length] [type] [init] 
'var' is a variable name with 
optional dimensions 
'length' is used to set the 
maximum size of the string to 
'n' as in LENGTH n 
'type' is one of  FLOAT or  
INTEGER or STRING (the 
type can be prefixed by the 
keyword AS - as in AS 
FLOAT) 
'init' is the value to initialise 
the variable and consists of: 
= <expression> 
For a simple variable one 
expression is used, for an array 
a list of comma separated 
expressions surrounded by 
brackets is used. 
 
 
Examples: 
DIM nbr(50) 

Declares one or more variables (ie, makes the variable name and its 
characteristics known to the interpreter).   
When OPTION EXPLICIT is used (as recommended) the DIM, LOCAL or 
STATIC commands are the only way that a variable can be created.  If this 
option is not used, then using the DIM command is optional and if not used 
the variable will be created automatically when first referenced. 
The type of the variable (ie, string, float or integer) can be specified in one of 
three ways:   
By using a type suffix (ie, !, % or $ for float, integer or string).   For example: 

DIM nbr%, amount!, name$ 
By using one of the keywords FLOAT, INTEGER or STRING immediately 
after the command DIM and before the variable(s) are listed.  The specified 
type then applies to all variables listed (ie, it does not have to be repeated).  
For example: 

DIM STRING first_name, last_name, city 
By using the Microsoft convention of using the keyword "AS" and the type 
keyword (ie, FLOAT, INTEGER or STRING) after each variable.  If you use 
this method the type must be specified for each variable and can be changed 
from variable to variable.  For example: 

DIM amount AS FLOAT, name AS STRING 
Floating point or integer variables will be set to zero when created and strings 
will be set to an empty string (ie, "").  You can initialise the value of the 
variable with something different by using an equals symbol (=) and an 
expression following the variable definition.  For example: 

DIM STRING city = "Perth", house = "Brick" 
The initialising value can be an expression (including other variables) and 
will be evaluated when the DIM command is executed.   



Page 139             Armmite F4 User Manual Page 139 

DIM INTEGER nbr(50) 
DIM name AS STRING 
DIM a, b$, nbr(100), strn$(20) 
DIM a(5,5,5), b(1000) 
DIM strn$(200) LENGTH 20 
DIM STRING strn(200)   
         LENGTH 20 
DIM a = 1234, b = 345 
DIM STRING strn = "text" 
DIM x%(3) = (11, 22, 33, 44) 
 

As well as declaring simple variables the DIM command will also declare 
arrayed variables (ie, an indexed variable with up to four dimensions).  Note 
that this is different from the Micromite versions of MMBasic which 
supported up to eight dimensions. 
Following the variable's name the dimensions are specified by a list of 
numbers separated by commas and enclosed in brackets.  For example: 

DIM array(10, 20) 
Each number specifies the number of elements in each dimension.  Normally 
the numbering of each dimension starts at 0 but the OPTION BASE 
command can be used to change this to 1. 
The above example specifies a two dimensional array with 11 elements (0 to 
10) in the first dimension and 21 (0 to 20) in the second dimension.  The total 
number of elements is 231 and because each floating point number on the 
Armmite F4 requires 8 bytes a total of 1848 bytes of memory will be 
allocated. 
Strings will default to allocating 255 bytes (ie, characters) of memory for 
each element and this can quickly use up memory when defining arrays of 
strings.  In that case the LENGTH keyword can be used to specify the 
amount of memory to be allocated to each element and therefore the 
maximum length of the string that can be stored.  This allocation ('n') can be 
from 1 to 255 characters. 
For example:  DIM STRING s(5, 10)  will declare a string array with 66 
elements consuming 16,896 bytes of memory while: 

DIM STRING s(5, 10) LENGTH 20 
Will only consume 1,386 bytes of memory.  Note that the amount of memory 
allocated for each element is n + 1 as the extra byte is used to track the actual 
length of the string stored in each element. 
If a string longer than 'n' is assigned to an element of the array an error will 
be produced.  Other than this, string arrays created with the LENGTH 
keyword act exactly the same as other string arrays.  This keyword can also 
be used with non array string variables but it will not save any memory. 
In the above example you can also use the Microsoft syntax of specifying the 
type after the length qualifier.  For example: 

DIM s(5, 10) LENGTH 20 AS STRING 
Arrays can also be initialised when they are declared by adding an equals 
symbol (=) followed by a bracketed list of values at the end of the 
declaration.  For example: 

DIM INTEGER nbr(4) = (22, 44, 55, 66, 88) 
or          DIM s$(3) = ("foo", "boo", "doo", "zoo") 
Note that the number of initialising values must match the number of 
elements in the array including the base value set by OPTION BASE.  If a 
multi dimensioned array is initialised then the first dimension will be 
initialised first followed by the second, etc. 
Also note that the initialising values must be after the LENGTH qualifier (if 
used) and after the type declaration (if used). 

DO 
DO  
   <statements>  
LOOP 

This structure will loop forever; the EXIT DO command can be used to 
terminate the loop or control must be explicitly transferred outside of the loop 
by commands like GOTO or EXIT SUB (if in a subroutine). 

DO WHILE expression  
   <statements>  
LOOP 

Loops while "expression" is true (this is equivalent to the older WHILE-
WEND loop, also implemented in MMBasic).  If, at the start, the expression 
is false the statements in the loop will not be executed, not even once. 

DO Loops until the expression following UNTIL is true.  Because the test is made 



Page 140             Armmite F4 User Manual Page 140 

   <statements>  
LOOP UNTIL expression 

at the end of the loop the statements inside the loop will be executed at least 
once, even if the expression is true. 

EDIT 
EDIT 

Invoke the full screen editor. 
See the section Full Screen Editor for details of how to use the editor. 

ELSE 
ELSE 

Introduces a default condition in a multiline IF statement. 
See the multiline IF statement for more details. 

ELSEIF 
ELSEIF expression THEN  
or 
ELSE IF expression THEN 

Introduces a secondary condition in a multiline IF statement.  
See the multiline IF statement for more details. 

END 
END 

End the running program and return to the command prompt. 

END CSUB 
END CSUB 

Marks the end of a C subroutine.  See the CSUB command.   
Each CSUB must have one and only one matching END CSUB statement.   

END FUNCTION 
END FUNCTION 

Marks the end of a user defined function.  See the FUNCTION command. 
Each function must have one and only one matching END FUNCTION 
statement.  Use EXIT FUNCTION if you need to return from a function from 
within its body. 

ENDIF 
ENDIF 
or 
END IF 

Terminates a multiline IF statement. 
See the multiline IF statement for more details. 

END SELECT 
END SELECT 

Marks the end of a SELECT CASE construction . see SELECT CASE 

END SUB 
END SUB 

Marks the end of a user defined subroutine.  See the SUB command. 
Each sub must have one and only one matching END SUB statement.  Use 
EXIT SUB if you need to return from a subroutine from within its body. 

ERASE 
ERASE variable [,variable]... 

Deletes variables and frees up the memory allocated to them.  This will work 
with arrayed variables and normal (non array) variables.  Arrays can be 
specified using empty brackets (eg, dat()) or just by specifying the 
variable's name (eg, dat). 
Use CLEAR to delete all variables at the same time (including arrays). 

ERROR 
ERROR [error_msg$] 

Forces an error and terminates the program.  This is normally used in 
debugging or to trap events that should not occur. 

EXECUTE 
EXECUTE commands$ 

This executes the Basic command "command$". Use should be limited to 
basic commands that execute sequentially for example the GOTO statement 
will not work properly. Things that are tested and work OK include GOSUB, 
Subroutine calls, other simple statements (like PRINT and simple 
assignments) 
Multiple statements separated by : (colon) are not allowed and will error 
The command sets an internal watchdog before executing the requested 
command and if control does not return to the command, like in a GOTO 
statement, the timer will expire. In this case you will get the message 
"Command timeout". 



Page 141             Armmite F4 User Manual Page 141 

RUN is a special case and will cancel the timer allowing you to use the 
command to chain programs if required. Variable persistence can be achieved 
using VAR SAVE/RESTORE if required. In the case of the CMM2 and 
Armmite F4 these use 4K of battery backed RAM so can be done without 
consequence. In the case of the Armmite H7 saving is done to flash memory 
so care should be exercised to stay within the limits of the write capability of 
the flash chip "Min. 100K Program-Erase cycles per sector" 

EXIT… 
EXIT DO 
EXIT FOR 
EXIT FUNCTION 
EXIT SUB 

EXIT DO provides an early exit from a DO...LOOP 
EXIT FOR provides an early exit from a FOR...NEXT loop.   
EXIT FUNCTION provides an early exit from a defined function. 
EXIT SUB provides an early exit from a defined subroutine. 
The old standard of EXIT on its own (exit a do loop) is also supported. 

FILES 
FILES [fspec$] 

Lists files in the current directory on the SD card. 
'fspec$' (if specified) can contain search wildcards.  Question marks (?) will 
match any character and an asterisk (*) will match any number of characters.  
If omitted, all files will be listed.  For example: 

*.* Find all entries 
*.TXT Find all entries with an extension of TXT 
E*.* Find all entries starting with E 
X?X.* Find all three letter file names starting and ending with X 

FONT 
FONT [#]font-number, scaling 

This will set the default font for displaying text on the LCDPANEL. 
Fonts are specified as a number.  For example, #2 (the # is optional)  See the 
chapter "Basic Graphics" for details of the available fonts. 
'scaling' can range from 1 to 15 and will multiply the size of the pixels 
making the displayed character correspondingly wider and higher.  Eg, a 
scale of 2 will double the height and width. 
OPTION LCDPANEL CONSOLE 
The FONT command does not change the Prompt Font when OPTION 
LCDPANEL CONSOLE is enabled. OPTION LCDPANEL CONSOLE font 
should be used to change the font used by the console.  
See LCD Display as the Console Output for details. 

FOR 
FOR counter = start TO finish 
[STEP increment] 

Initiates a FOR-NEXT loop with the  'counter' initially set to 'start' and 
incrementing in 'increment' steps (default is 1) until 'counter' is greater than 
'finish'. 
The ‘increment’ can be an integer or floating point number.  Note that using a 
floating point fractional number for 'increment' can accumulate rounding 
errors in 'counter' which could cause the loop to terminate early or late. 
'increment' can be negative in which case 'finish' should be less than 'start' 
and the loop will count downwards. 
See also the NEXT command. 

FTT 
FTT 

Now is part of the MATH command. 
See the MATH command 

FUNCTION 
FUNCTION xxx (arg1 
[,arg2, …]) [AS <type>} 
   <statements> 
   <statements> 
   xxx = <return value> 
END FUNCTION 

Defines a callable function.  This is the same as adding a new function to 
MMBasic while it is running your program. 
'xxx' is the function name and it must meet the specifications for naming a 
variable.    The type of the function can be specified by using a type suffix 
(ie, xxx$) or by specifying the type using AS <type> at the end of the 
functions definition.  For example: 

FUNCTION xxx (arg1, arg2) AS STRING 



Page 142             Armmite F4 User Manual Page 142 

'arg1', 'arg2', etc are the arguments or parameters to the function (the brackets 
are always required, even if there are no arguments).  An array is specified by 
using empty brackets.  ie,  arg3().    The type of the argument can be specified 
by using a type suffix (ie, arg1$) or by specifying the type using AS 
<type> (ie, arg1 AS STRING). 

The argument can also be another defined function or the same function if 
recursion is to be used (the recursion stack is limited to 50 nested calls). 
To set the return value of the function you assign the value to the function's 
name.  For example: 

FUNCTION SQUARE(a) 
  SQUARE = a * a 
END FUNCTION 

Every definition must have one END FUNCTION statement.  When this is 
reached the function will return its value to the expression from which it was 
called.  The command EXIT FUNCTION can be used for an early exit. 
You use the function by using its name and arguments in a program just as 
you would a normal MMBasic function.   
For example: 

PRINT SQUARE(56.8) 
When the function is called each argument in the caller is matched to the 
argument in the function definition.  These arguments are available only 
inside the function.   
Functions can be called with a variable number of arguments.  Any omitted 
arguments in the function's list will be set to zero or a null string.   
Arguments in the caller's list that are a variable (ie, not an expression or 
constant) will be passed by reference to the function.  This means that any 
changes to the corresponding argument in the function will also be copied to 
the caller's variable.  Arrays are passed by specifying the array name with 
empty brackets (eg, arg()) and are always passed by reference. 
You must not jump into or out of a function using commands like GOTO, 
GOSUB, etc.  Doing so will have undefined side effects including the 
possibility of ruining your day. 

GOSUB 
GOSUB 

See Obsolete Commands and Functions  section. 

GOTO 
GOTO target 

See Obsolete Commands and Functions  section. 
Branches program execution to the target, which can be a line number or a 
label. 

---GUI Controls— 
*** GUI Controls *** 

Used to implement a GUI display with touch support. See  
Advanced Graphics for details. 

GUI AREA 
GUI AREA #ref, startX, 
startY, width, height 

This will define an invisible area of the screen that is sensitive to touch and 
will generate touch down and touch up interrupts.   It can be used as the basis 
for creating custom controls which are defined and managed by the program. 

'#ref' is the control's reference number.  'startX' and 'startY' are the top left 
coordinates while 'width' and 'height' set the dimensions. 

GUI BARGAUGE 
GUI BARGAUGE #ref, 
StartX, StartY, width, height, 
FColour, BColour, min, max, 
c1, ta, c2, tb, c3, tc, c4 

Define either a horizontal or vertical analogue bar gauge.   

'#ref' is the control's reference number. 

'StartX' and 'StartY' are the top left coordinates of the bar while 'width' is the 
horizontal width and 'height' the vertical height.  If the width is less that the 
height the bar gauge will be drawn vertically with the graph growing from the 
bottom towards the top.  Otherwise it will be drawn horizontally with the 



Page 143             Armmite F4 User Manual Page 143 

graph growing from the left towards the right. 
'Fcolour' is the colour used for the gauge while 'Bcolour' is the background 
colour.  'min' is the minimum value of the gauge and 'max' is the maximum 
value (both floating point). 
A multi colour gauge can be created using 'c1' to 'c4' for the colours and 'ta' to 
'tc' for the thresholds used to determine when the colour will change.  
'width', 'height', 'FColour', 'BColour', 'min' and 'max' are optional and will 
default to the values used in the previous definition of a GUI BARGAUGE.   
'c1', 'ta', 'c2', 'tb', 'c3', 'tc' and 'c4' are optional and if not specified the gauge 
will use less colours.  If all are omitted, the gauge will be drawn using 
'Fcolour'. 
The section Advanced Graphics has a more detailed description. 

GUI BCOLOUR 
GUI BCOLOUR colour, #ref1 
[, #ref2, #ref3, etc] 

This will change the background colour of the specified controls to 'colour' 
which is an RGB value for the drawing colour. 

'#ref' is the control's reference number. 

GUI BEEP 
GUI BEEP msec 

This will sound the pizeo buzzer if configured with the OPTION TOUCH 
command. 
'msec' is the number of milliseconds that the buzzer should be driven.  A time 
of 3ms produces a click while 100ms produces a short beep. 

GUI BUTTON 
GUI BUTTON #ref, caption$, 
startX, startY, width, height [, 
FColour] [,BColour] 

This will draw a momentary button which is a square switch with the caption 
on its face.   
When touched the visual image of the button will appear to be depressed and 
the control's value will be 1.  When the touch is removed the value will revert 
to zero.   

#ref' is the control's reference (a number from 1 to 100). 

'caption$' is the string to display on the face of the button.  It can be a single 
string with two captions separated by a | character (e.g., "UP|DOWN").  
When the button is up the first string will be used and when pressed the 
second will be used. 

'startX' and 'startY' are the top left coordinates while 'width' and 'height' set 
the dimensions.  ' FColour  and 'BColour' are RGB values for the foreground 
and background colours.  

'width', 'height', FColour  and 'BColour' are optional and default to that used 
in previous controls or set with the COLOUR command. 

GUI CAPTION 
GUI CAPTION #ref, text$, 
startX, startY [,align$] 
[, FColour] [, BColour] 

This will draw a text string on the screen.  

'#ref' is the control's reference number. 

'text$' is the string to display.  'startX' and 'startY' are the top left coordinates.   

'align$' is zero to three characters (a string expression or variable is also 
allowed) where the first letter is the horizontal alignment around X and can 
be L, C or R for LEFT, CENTER, RIGHT and the second letter is the vertical 
alignment around Y and can be T, M or B for TOP, MIDDLE, BOTTOM.  A 
third character can be used in the string to indicate the rotation of the text.  
This can be 'N' for normal orientation, 'V' for vertical text with each character 
under the previous running from top to bottom, 'I' the text will be inverted (ie, 
upside down), 'U' the text will be rotated counter clockwise by 90º and 'D' the 
text will be rotated clockwise by 90º.  The default alignment is left/top with 
no rotation.   

'FColour  and 'BColour' are RGB values for the foreground and background 



Page 144             Armmite F4 User Manual Page 144 

colours.  On a display that supports transparent text BColour can be -1 which 
means that the background will show through the gaps in the characters. 

FColour  and 'BColour' are optional and default to the colours set by the 
COLOUR command. 

GUI CHECKBOX 
GUI CHECKBOX #ref, 
caption$, startX, startY [, size] 
[, colour] 

This will draw a check box which is a small box with a caption.  When 
touched an X will be drawn inside the box to indicate that this option has 
been selected and the control's value will be set to 1.  When touched a second 
time the check mark will be removed and the control's value will be zero. 

'#ref' is the control's reference number. 

The string 'caption$' will be drawn to the right of the control using the 
colours set by the COLOUR command. 

 'startX' and 'startY' are the top left coordinates while 'size' set the height and 
width (the bix is square).  'colour' is an RGB value for the drawing colour. 
'size' and 'colour' are optional and default to that used in previous controls. 

GUI DELETE 
GUI DELETE #ref1 [,#ref2, 
#ref3, etc] 
or 
GUI DELETE ALL 

This will delete the controls in the list.  This includes removing the image of 
the control from the screen using the current background colour and freeing 
the memory used by the control. 

'#ref' is the control's reference number.  The keyword ALL can be used as the 
argument and that will disable all controls. 

GUI DISABLE 
GUI DISABLE #ref1 [,#ref2, 
#ref3, etc] 
or 
GUI DISABLE ALL 

This will disable the controls in the list.  Disabled controls do not respond to 
touch and will be displayed dimmed. 

'#ref' is the control's reference number.  The keyword ALL can be used as the 
argument and that will disable all controls. 

GUI ENABLE can be used to restore the controls. 

GUI DISPLAYBOX 
GUI DISPLAYBOX #ref, 
startX, startY, width, height, 
FColour, BColour 

This will draw a box with rounded corners that can be used to display a string  

'#ref' is the control's reference number. 

'startX' and 'startY' are the top left coordinates while 'width' and 'height' set 
the dimensions.  ' FColour  and 'BColour' are RGB values for the foreground 
and background colours. 'width', 'height', FColour  and 'BColour' are optional 
and default to that used in previous controls. 

Any text can be displayed in the box by using the CtrlVal(r) = command.  
This is useful for displaying text, numbers and messages.   

This control does not respond to touch. 

GUI ENABLE 
GUI ENABLE #ref1 [,#ref2, 
#ref3, etc] 
or 
GUI ENABLE ALL 

This will undo the effects of GUI DISABLE and restore the control(s) to 
normal operation. 

'#ref' is the control's reference number.  The keyword ALL can be used as the 
argument and that will disable all controls. 

GUI FCOLOUR 
GUI FCOLOUR colour, #ref1 
[, #ref2, #ref3, etc] 

This will change the foreground colour of the specified controls to 'colour' 
which is an RGB value for the drawing colour. 

'#ref' is the control's reference number. 

GUI FRAME 
GUI FRAME #ref, caption$, This will draw a frame which is a box with round corners and a caption.  



Page 145             Armmite F4 User Manual Page 145 

startX, startY, width, height, 
colour 

'#ref' is the control's reference number. 

'caption$' is a string to display as the caption.  'startX' and 'startY' are the top 
left coordinates while 'width' and 'height' set the dimensions.  'colour' is an 
RGB value for the drawing colour. 'width', 'height' and 'colour' are optional 
and default to that used in previous controls. 

A frame is useful when a group of controls need to be visually brought 
together.  It is also used to surround a group of radio buttons and MMBasic 
will arrange for the radio buttons surrounded by the frame to be exclusive.  ie, 
when one radio button is selected any other button that was selected and 
within the frame will be automatically deselected. 

A frame does not respond to touch. 

GUI FORMATBOX 
GUI FORMATBOX #ref, 
Format, startX, startY, width, 
height, FColour, BColour 

This will draw a box with rounded corners that can be used to create a virtual 
keypad for entry of data using a specific format. 

'#ref' is the control's reference number. 

'startX' and 'startY' are the top left coordinates while 'width' and 'height' set 
the dimensions.  ' FColour  and 'BColour' are RGB values for the foreground 
and background colours. 'width', 'height', FColour  and 'BColour' are optional 
and default to that used in previous controls. 

The 'Format' argument specifies the format of the entry as follows: 

DATE1  Date in UK/Aust/NZ format (dd/mm/yy) 
DATE2  Date in USA format (mm/dd/yy) 
DATE3  Date in international format (yyyy/mm/dd) 
TIME1 Time in 24 hour notation (hh:mm) 
TIME2  Time in 24 hour notation with seconds (hh:mm:ss) 
TIME3  Time in 12 hour notation (hh:mm AM/PM) 
TIME4  Time in 12 hour notation with seconds (hh:mm:ss AM/PM) 
DATETIME1  Date (UK fmt) and time (12 hour) (dd/mm/yy hh:mm 
AM/PM) 
DATETIME2  Date (UK fmt) and time (24 hour) (dd/mm/yy hh:mm) 
DATETIME3  Date (USA fmt) and time (12 hour) (mm/dd/yy hh:mm 
AM/PM) 
DATETIME4  Date (USA fmt) and time (24 hour) (mm/dd/yy hh:mm) 
LAT1  Latitude in degrees, minutes and seconds (dd° mm' ss" N/S) 
LAT2  Latitude with seconds to one decimal place (dd° mm' ss.s" 
N/S) 
LONG1  Longitude in degrees, minutes and seconds (ddd° mm' ss" 
E/W) 
LONG2  Longitude seconds to one decimal place (ddd° mm' ss.s" 
E/W) 
ANGLE1  Angle in degrees and minutes (ddd° mm') 

For example, this command: 
  GUI FORMATBOX #1, LAT1, 50, 50, 300, 50 

would create a format box which would accept the entry of latitude in the 
format of dd° mm' ss" N/S.  The value of CtrlVal(#1) would be a string which 
includes the numbers and separating characters.  For example an entry of 17 
degrees, 32 minutes and 1 second south would result in the string 17° 32' 01" 
S 

MMBasic will try to position the virtual keypad on the screen so as to not 
obscure the format box that caused it to appear.  A pen down interrupt will be 
generated just before the keypad is deployed and a key up interrupt will be 
generated when the entry is complete and the keypad is hidden.  



Page 146             Armmite F4 User Manual Page 146 

GUI FORMATBOX 
ACTIVATE #ref This will cause the virtual keypad for the control ‘#ref’ to be displayed under 

program control without the control being touched. It is the same as if the 
user touched the control except that the touch down interrupt is not generated. 

GUI FORMATBOX 
CANCEL This will dismiss a virtual keypad if it is displayed on the screen.  It is the 

same as if the user touched the cancel key except that the touch up interrupt is 
not generated.  If a keypad is not displayed this command will do nothing. 

GUI GAUGE 
GUI GAUGE #ref, StartX, 
StartY, Radius, FColour, 
BColour, min, max, nbrdec, 
units$, c1, ta, c2, tb, c3, tc, c4 
 

Define a graphical circular analogue gauge with a digital display in the 
centre.   

'#ref' is the control's reference number. 

'StartX' and 'StartY' are the coordinates of the centre of the gauge, 'Radius' is 
the distance from the centre to the outer edge.   
'min' is the minimum value of the gauge and 'max' is the maximum value 
(both floating point).   
'nbrdec' specifies the number of decimal places to be used when drawing the 
digital value in the centre of the gauge.  Under this 'units$' will be displayed. 
'Fcolour' is the colour used for the gauge while 'Bcolour' is the background 
colour. A multi colour gauge can be created using 'c1' to 'c4' for the colours 
and 'ta' to 'tc' for the thresholds used to determine when the colour will 
change. When colours and thresholds are specified the background of the 
gauge will be drawn with a dull version of the colour at that level.  Also the 
digital value will change to the colour specified by the current value. 
'Radius', 'FColour', 'BColour', 'min', 'max', 'nbrdec' and 'units$' are optional 
and will default to the values used in the previous definition of a GUI 
GAUGE.   
'c1', 'ta', 'c2', 'tb', 'c3', 'tc' and 'c4' are optional and if not specified the gauge 
will use less colours.  If all are omitted the gauge will be drawn using 
'Fcolour'. 

The section Advanced Graphics has a more detailed description. 

GUI HIDE 
GUI HIDE #ref1 [,#ref2, 
#ref3, etc] 
or 
GUI HIDE ALL 

This will hide the controls in the list.  Hidden controls do not respond to 
touch and will not be visible. 

'#ref' is the control's reference number.  The keyword ALL can be used as the 
argument and that will hide all controls.  

GUI SHOW can be used to restore the controls. 

GUI INTERRUPT 
GUI INTERRUPT down [, up] 

This command will setup an interrupt that will be triggered on a touch on the 
LCD panel and optionally if the touch is released. 
'down' is the subroutine to call when a touch down has been detected.  'up' is 
the subroutine to call when the touch has been lifted from the screen ('up' and 
'down' can point to the same subroutine if required). 
Specifying the number zero (single digit) as the argument will cancel both of 
these interrupts.  ie: 
   GUI INTERRUPT 0 

GUI LED 
GUI LED #ref, caption$, 
centerX, centerY, radius, 
colour 

This will draw an indicator light which looks like a panel mounted LED.  A 
LED does not respond to touch. 

'#ref' is the control's reference number. 

The string 'caption$' will be drawn to the right of the control using the 



Page 147             Armmite F4 User Manual Page 147 

colours set by the COLOUR command. 

'centerX' and 'centerY' are the coordinates of the centre of the LED and 
'radius' is the radius of the LED.  'colour' is an RGB value for the drawing 
colour. 'radius' and 'colour' are optional and default to that used in previous 
controls. 

When a LED's value is set to a value of one it will be illuminated and when it 
is set to zero it will be off (a dull version of its colour attribute).  The LED 
can be made to flash on then off by setting the value of the LED to a number 
greater than one which is the time in milliseconds that it should remain on. 

The colour can be changed with the GUI FCOLOUR command. 

GUI NUMBERBOX 
GUI NUMBERBOX #ref, 
startX, startY, width, height, 
FColour, BColour 

This will draw a box with rounded corners that can be used to create a virtual 
numeric keypad for data entry. 

'#ref' is the control's reference number. 

'startX' and 'startY' are the top left coordinates while 'width' and 'height' set 
the dimensions.  ' FColour  and 'BColour' are RGB values for the foreground 
and background colours. 'width', 'height', FColour  and 'BColour' are optional 
and default to that used in previous controls. 

When the box is touched a numeric keypad will appear on the screen.  Using 
this virtual keypad any number can be entered into the box including a 
floating point number in exponential format.  The new number will replace 
the number previously in the box. 

The value of the control can set to a literal string (not an expression) starting 
with two hash characters.  For example: 

CtrlVal(nnn) = "##Enter Number" 
and in that case the string (without the leading two hash characters) will be 
displayed in the box with reduced brightness.  This can be used to give the 
user a hint as to what should be entered (called "ghost text").  Reading the 
value of the control displaying ghost text will return zero. When the control is 
used normally the ghost text will vanish. 

MMBasic will try to position the virtual keypad on the screen so as to not 
obscure the number box that caused it to appear.  A pen down interrupt will 
be generated just before the keypad is deployed and a key up interrupt will be 
generated when the Enter key is touched and the keypad is hidden.  Also, 
when the Enter key is touched the entered number will be evaluated as a 
number and the NUMBERBOX control redrawn to display this number. 

GUI NUMBERBOX 
CANCEL 

This will dismiss a virtual keypad if it is displayed on the screen.  It is the 
same as if the user touched the cancel key except that the touch up interrupt is 
not generated.  If a keypad is not displayed this command will do nothing. 

GUI PAGE 
GUI PAGE #n [,#n2, #n3, etc] 

This will switch the display to show controls that have been assigned (via   
the GUI SETUP command) to the page numbers specified on the command   
line (#n, #n2, etc).  Any controls that were displayed but are not on the  
current list of pages will be automatically hidden.  Any controls on a page 
that was displayed on the old screen and is also specified in the new  
command will remain unaffected.   
The default when a program starts running is PAGE 1 and GUI SETUP 1. 
This means that if these commands are not used the program will run as  
normal showing all GUI controls that have been defined.   
See also the GUI SETUP command.   



Page 148             Armmite F4 User Manual Page 148 

GUI RADIO 
GUI RADIO #ref, caption$, 
centerX, centerY, radius, 
colour 

This will draw a radio button with a caption.  

'#ref' is the control's reference number. 

The string 'caption$' will be drawn to the right of the control using the 
colours set by the COLOUR command. 

'centerX' and 'centerY' are the coordinates of the centre of the button and 
'radius' is the radius of the button.  'colour' is an RGB value for the drawing 
colour. 'radius' and 'colour' are optional and default to that used in previous 
controls. 

When touched the centre of the button will be illuminated to indicate that this 
option has been selected and the control's value will be 1.  When another 
radio button is selected the mark on this button will be removed and its value 
will be zero.  Radio buttons are grouped together when surrounded by a 
frame and when one button in the group is selected all others in the group 
will be deselected.  If a frame is not used all buttons on the screen will be 
grouped together. 

GUI REDRAW 
GUI REDRAW #ref1 [,#ref2, 
#ref3, etc] 
or 
GUI REDRAW ALL 

This will redraw the controls on the screen.  It is useful if the screen image 
has somehow been corrupted.  

'#ref' is the control's reference number.  The keyword ALL can be used as the 
argument and that will first clear the screen then redraw all controls.  This is 
useful if the whole screen needs to be refreshed. 

GUI SETUP 
GUI SETUP #n  This will allocate any new controls created to the page '#n'. 

This command can be used as many times as needed while GUI controls are 
being defined.  The default when a program starts running is GUI SETUP 1. 

See also the GUI PAGE command. 

GUI SHOW 
GUI SHOW #ref1 [,#ref2, 
#ref3, etc] 
or 
GUI SHOW ALL 

This will undo the effects of GUI HIDE and restore the control(s) to being 
visible and capable of normal operation. 

'#ref' is the control's reference number.  The keyword ALL can be used as the 
argument and that will disable all controls. 

GUI SPINBOX 
GUI SPINBOX #ref, startX, 
startY, width, height, FColour, 
BColour, Step, Minimum, 
Maximum 

This will draw a box with up/down icons on either end.  When these icons are 
touched the number in the box will be incremented or decremented.  Holding 
down the up/down icons will repeat the step at a fast rate. 

'#ref' is the control's reference number. 

'startX' and 'startY' are the top left coordinates while 'width' and 'height' set 
the dimensions.  ' FColour  and 'BColour' are RGB values for the foreground 
and background colours.  

'width', 'height', FColour  and 'BColour' are optional and default to that used 
in previous controls. 

'Step' sets the amount to increment/decrement the number with each touch.  
'Minimum' and 'Maximum' set limits on the number that can be entered.  All 
three parameters can be floating point numbers and are optional.  The default 
for 'Step' is 1 and 'Minimum' and 'Maximum' if omitted will default to no 
limit. 

GUI SWITCH 
GUI SWITCH #ref, caption$, 
startX, startY, width, height, 

This will draw a latching switch which is a square switch that latches when 
touched.  



Page 149             Armmite F4 User Manual Page 149 

FColour, BColour '#ref' is the control's reference number. 

'caption$' is a string to display as the caption on the face of the switch.  
'startX' and 'startY' are the top left coordinates while 'width' and 'height' set 
the dimensions.  ' FColour  and 'BColour' are RGB values for the foreground 
and background colours. 'width', 'height', FColour  and 'BColour' are optional 
and default to that used in previous controls. 

When touched the visual image of the button will appear to be depressed and 
the control's value will be 1.  When touched a second time the switch will be 
released and the value will revert to zero.  Caption can consist of two 
captions separated by a | character (eg, "ON|OFF").  When this is used the 
switch will appear to be a toggle switch with each half of the caption used to 
label each half of the toggle switch. 

GUI TEXTBOX 
GUI TEXTBOX #ref, startX, 
startY, width, height, FColour, 
BColour 

This will draw a box with rounded corners that can be used to create a virtual 
keyboard for data entry  

'#ref' is the control's reference number. 

'startX' and 'startY' are the top left coordinates while 'width' and 'height' set 
the dimensions.  ' FColour  and 'BColour' are RGB values for the foreground 
and background colours. 'width', 'height', FColour  and 'BColour' are optional 
and default to that used in previous controls.  On a display that supports 
transparent text BColour can be -1 which means that the background will 
show through the gaps in the characters. 

When the box is touched a QWERTY keyboard will appear on the screen.  
Using this virtual keyboard any text can be entered into the box including 
upper/lower case letters, numbers and any other characters in the ASCII 
character set.  The new text will replace any text previously in the box.   

The value of the control can set to a string starting with two hash characters.  
For example: 

CtrlVal(nnn) = "##Enter Filename" 
and in that case the string (without the leading two hash characters) will be 
displayed in the box with reduced brightness.  This can be used to give the 
user a hint as to what should be entered (called "ghost text").  Reading the 
value of the control displaying ghost text will return an empty string. When 
the control is used normally the ghost text will vanish. 

MMBasic will try to position the virtual keyboard on the screen so as to not 
obscure the text box that caused it to appear.  A pen down interrupt will be 
generated just before the keyboard is deployed and a key up interrupt will be 
generated when the Enter key is touched and the keyboard is hidden.  

GUI TEXTBOX ACTIVATE 
#ref This will cause the virtual keyboard for the control ‘#ref’ to be displayed 

under program control without the control being touched. It is the same as if 
the user touched the control except that the touch down interrupt is not 
generated. 

GUI TEXTBOX CANCEL This will dismiss a virtual keyboard if it is displayed on the screen.  It is the 
same as if the user touched the cancel key except that the touch up interrupt is 
not generated.  If a keyboard is not displayed this command will do nothing. 

---GUI Commands— 
*** GUI Commands *** These GUI commands are used to configure LCDPANEL and TOUCH. Also 

includes the GUI BITMAP command to display a bitmap. 

GUI BITMAP 
GUI BITMAP  x,  y,  bits  [, 

Displays the bits in a bitmap on an LCD panel starting at 'x' and 'y' on an 
attached LCD panel. 



Page 150             Armmite F4 User Manual Page 150 

width]  [, height]  [, scale]  [, 
c]  [, bc] 

'height' and 'width' are the dimensions of the bitmap as displayed on the LCD 
panel and default to 8x8.  
'scale' is optional and defaults to that set by the FONT command.   
'c' is the drawing colour and 'bc' is the background colour.  They are optional 
and default to the current foreground and background colours. 
The bitmap (‘bits’) can be an integer or a string variable or constant and is 
drawn using the first byte as the first bits of the top line (bit 7 first, then bit 6, 
etc) followed by the next byte, etc.  When the top line has been filled the next 
line of the displayed bitmap will start with the next bit in the integer or string. 
See the chapter Using an LCD Panel for a definition of the colours and 
graphics coordinates. 

GUI CALIBRATE 
GUI CALIBRATE 
Or 
GUI CALIBRATE 
c1,c2,c3,c4,c5 

This command is used to calibrate the touch feature on an LCD panel.  It will 
display a series of targets on the screen and wait for each one to be precisely 
touched. See Calibrating the Touch Screen for details. 

The second version allows the calibration parameters to be entered directly 
without having to go through the manual calibration process.  The parameters 
'c1', 'c2', etc can be found by running a normal calibration process then using 
OPTION LIST which will list the parameters for that LCD panel.  This is 
useful when the command is embedded in a program. 

GUI RESET LCDPANEL 
GUI RESET LCDPANEL Will reinitialise the configured LCD panel.  Initialisation is automatically 

done when the Micromite starts up but in some circumstances it may be 
necessary to interrupt power to the LCD panel (eg, to save battery power) and 
this command can then be used to reinitialise the display. 

GUI TEST LCDPANEL 
GUI TEST LCDPANEL 

Will test the display feature on an LCD panel. 
With GUI TEST LCDPANEL an animated display of colour circles will be 
rapidly drawn on top of each other. 

Any character entered at the console will terminate the test 

GUI TEST TOUCH 
GUI TEST TOUCH 

With GUI TEST TOUCH the screen will blank and wait for a touch which 
will cause a white dot to be placed on the display marking the touch position 
on the screen. 
Any character entered at the console will terminate the test 

HUMID 
HUMID pin, tvar, 
hvar[,version] 

 Now BITBANG HUMID. 
This is accepted but saved as the new form of the command. 

I2C 
I2C 

The I2C commands will send and receive data over an I2C channel. 
I2C (no suffix) refers to channel 1 while commands I2C2 and I2C3 refer to 
channels 2 and 3 using the same syntax. 

Also see Appendix B. 

I2C OPEN speed, timeout Enables the I2C module in master mode.  ‘speed’ is the clock speed (in KHz) 
to use and must be one of 100 or 400. 
‘timeout’ is a value in milliseconds after which the master send and receive 
commands will be interrupted if they have not completed. The minimum 
value is 100. A value of zero will disable the timeout (though this is not 
recommended). 

I2C WRITE addr, option, 
sendlen, senddata [,sendata ....] 

Send data to the I2C slave device. ‘addr’ is the slave’s I2C address. 
‘option’ can be 0 for normal operation or 1 to keep control of the bus after the 



Page 151             Armmite F4 User Manual Page 151 

command (a stop condition will not be sent at the completion of the 
command) 

 ‘sendlen’ is the number of bytes to send. 
‘senddata’ is the data to be sent - this can be specified in various ways (all 
values sent will be between 0 and 255): 

 The data can be supplied as individual bytes on the command line. 
Example:  I2C WRITE &H6F, 0, 3, &H23, &H43, &H25 

 The data can be in a one dimensional array specified with empty 
brackets (ie, no dimensions).  ‘sendlen’ bytes of the array will be sent 
starting with the first element.  Example:  I2C WRITE &H6F, 0, 3, 
ARRAY() 

The data can be a string variable (not a constant). 
Example:  I2C WRITE &H6F, 0, 3, STRING$ 

I2C READ addr, option, 
rcvlen, rcvbuf 

Get data from the I2C slave device. ‘addr’ is the slave’s I2C address. 
‘option’ can be 0 for normal operation or 1 to keep control of the bus after the 
command (a stop condition will not be sent at the completion of the 
command) 

 ‘rcvlen’ is the number of bytes to receive. 
‘rcvbuf’ is the variable or array used to save the received data - this can be: 

 A string variable.  Bytes will be stored as sequential characters in the 
string. 

 A one dimensional array of numbers specified with empty brackets.  
Received bytes will be stored in sequential elements of the array starting 
with the first.  
Example:  I2C READ &H6F, 0, 3, ARRAY() 

A normal numeric variable (in this case rcvlen must be 1). 

I2C CLOSE 
 
 
I2C CHECK addr 

 Disables the master I2C module and returns the I/O pins to a "not 
configured" state.  They can then be configured using SETPIN.  This 
command will also send a stop if the bus is still held. 
 
Will set MM.I2C to 0 if a device responds at the address. MM.I2C is set to 1 
if no response. Will give an error if the I2C has not been opened. 

I2C2 As above but for 2nd I2C channel. 

IF 
IF expr THEN stmt [: stmt] 
or 
IF expr THEN stmt ELSE stmt 

Evaluates the expression ‘expr' and performs the statement following the 
THEN keyword if it is true or skips to the next line if false.  If there are more 
statements on the line (separated by colons (:) they will also be executed if 
true or skipped if false.   
The ELSE keyword is optional and if present only one true statement is 
allowed following the THEN keyword.   If 'expr' is resolved to be false the 
single statement following the ELSE keyword will be executed. 
The ‘THEN statement’ construct can be also replaced with: 
GOTO linenumber | label’. 
This type of IF statement is all on one line. 

IF expression THEN  
   <statements> 
[ELSEIF expression THEN 
   <statements>] 
[ELSE 
   <statements>] 

Multiline IF statement with optional ELSE and ELSEIF cases and ending 
with ENDIF.   Each component is on a separate line. 
Evaluates 'expression' and performs the statement(s) following THEN if the 
expression is true or optionally the statement(s) following the ELSE 
statement if false.  The ELSEIF statement (if present) is executed if the 
previous condition is false and it starts a new IF chain with further ELSE 



Page 152             Armmite F4 User Manual Page 152 

ENDIF and/or ELSEIF statements as required. 
One ENDIF is used to terminate the multiline IF.  

INC 
INC a[, b] 

Increments a by 1 by default. If b is supplied then a is adjusted by the value 
of b. If b is -ve then a is decremented by that amount. E.g. INC a, -1 
b can be an expression. e.g. INC i,(i<10)  will for example add 1 to i but to a 
maximum of 10 as the expression then becomes 0 and nothing further is 
added. 
 

INPUT 
INPUT ["prompt$";] var1 
[,var2 [, var3 [, etc]]] 

Will take a list of values separated by commas (,) entered at the console and 
will assign them to a sequential list of variables. 
For example, if the command is:  INPUT a, b, c 
And the following is typed on the keyboard:  23, 87, 66 
Then a = 23 and b = 87 and c = 66 
The list of variables can be a mix of float, integer or string variables.  The 
values entered at the console must correspond to the type of variable. 
If a single value is entered a comma is not required (however that value 
cannot contain a comma). 
‘prompt$’ is a string constant (not a variable or expression) and if specified it 
will be printed first.  Normally the prompt is terminated with a semicolon (;) 
and in that case a question mark will be printed following the prompt.  If the 
prompt is terminated with a comma (,) rather than the semicolon (;) the 
question mark will be suppressed. 

INPUT #nbr, 
list of variables 

Same as the normal INPUT command except that the input is read from a file 
previously opened for INPUT as ‘#fnbr’ or a serial port previously opened for 
INPUT as ‘nbr’.  See the OPEN command. 

INTERRUPT 
INTERRUPT [myint] 
 

This command triggers a software interrupt. The interrupt is set up using   
 INTERRUPT ‘myint’ where ‘myint’ is the name of a subroutine that will be   
 executed when the interrupt is triggered.    
 Use INTERRUPT 0 to disable the interrupt   
 Use INTERRUPT without parameters to trigger the interrupt.   
 NB: the interrupt can also be triggered from within a CSUB 
Note that while the code within the ‘myint’ subroutine is running other 
interrupts are not serviced. 



Page 153             Armmite F4 User Manual Page 153 

IR 
IR dev, key , int 
or 
IR CLOSE 

 
Decodes NEC or Sony infrared remote control signals. 
An IR Receiver Module is used to sense the IR light and demodulate the 
signal.  It should be connected to the IR pin (see the pinout tables).  This 
command will automatically set that pin to an input. 
The IR signal decode is done in the background and the program will 
continue after this command without interruption.  'dev' and 'key' should be 
numeric variables and their values will be updated whenever a new signal is 
received ('dev' is the device code transmitted by the remote and 'key' is the 
key pressed).  
'int' is a user defined subroutine that will be called when a new key press is 
received or when the existing key is held down for auto repeat.  In the 
interrupt subroutine the program can examine the variables 'dev' and 'key' and 
take appropriate action. 
The IR CLOSE command will terminate the IR decoder and return the I/O 
pin to a not configured state. 
Note that for the NEC protocol the bits in 'dev' and 'key' are reversed.  For 
example, in 'key' bit 0 should be bit 7, bit 1 should be bit 6, etc.  This does not 
affect normal use but if you are looking for a specific numerical code 
provided by a manufacturer you should reverse the bits.  This describes how 
to do it: http://www.thebackshed.com/forum/forum_posts.asp?TID=8367 
See the chapter "Special Hardware Devices" for more details. 

IR SEND 
IR SEND pin, dev, key 

Generate a 12-bit Sony Remote Control protocol infrared signal. 
'pin' is the I/O pin to use.  This can be any I/O pin which will be automati-
cally configured as an output and should be connected to an infrared LED.  
Idle is low with high levels indicating when the LED should be turned on.  
'dev' is the device being controlled and is a number from 0 to 31, 'key' is the 
simulated key press and is a number from 0 to 127. 
The IR signal is modulated at about 38KHz and sending the signal takes 
about 25mS. 

IRETURN 
IRETURN 

See obsolete commands. 

KEYPAD 
KEYPAD  var, int, r1, r2, r3, 
r4, c1, c2, c3, c4 
or  
KEYPAD CLOSE 
 

Monitor and decode key presses on a 4x3 or 4x4 keypad. 
Monitoring of the keypad is done in the background and the program will 
continue after this command without interruption. 'var' should be a numeric 
variable and its value will be updated whenever a key press is detected. 
'int' is a user defined subroutine that will be called when a new key press is 
received. In the interrupt subroutine the program can examine the variable 
'var' and take appropriate action. 
r1, r2, r3 and r4 are pin numbers used for the four row connections to the 
keypad and c1, c2, c3 and c4 are the column connections. c4 is optional and 
is only used with 4x4 keypads. This command will automatically configure 
these pins as required. 
On a key press the value assigned to 'var' is the number of a numeric key (eg, 
'6' will return 6) or 10 for the * key and 11 for the # key. On 4x4 keypads 
the number 20 will be returned for A, 21 for B, 22 for C and 23 for D. 
The KEYPAD CLOSE command will terminate the keypad function and 
return the I/O pin to a not configured state. 
See the chapter  Keypad Interface for more details. 



Page 154             Armmite F4 User Manual Page 154 

KILL 
KILL file$ 

Deletes the file or empty directory specified by ‘file$’. If there is an extension 
it must be specified.   

LCD 
LCD INIT d4, d5, d6, d7, rs, 
en 
or 
LCD line, pos, text$ 
or 
LCD CLEAR 
or 
LCD CLOSE 

Now BITBANG LCD. 
This is still accepted but is saved as the new command format. 

LCD CMD d1 [, d2 [, etc]] 
or 
LCD DATA d1 [, d2 [, etc]] 

Now BITBANG LCD. 
This is still accepted but is saved as the new command format. 

LET 
LET variable = expression 

Assigns the value of 'expression' to the variable.  LET is automatically 
assumed if a statement does not start with a command.  For example: 
Var = 56 

LIBRARY 
LIBRARY SAVE 
 
 
 
 
 
 
 
 
LIBRARY DELETE 
 
 
LIBRARY LIST [ALL] 
 
 
 
 
LIBRARY CHECK 
 

The library is a special segment of program memory that can contain program 
code such as subroutines, functions and CFunctions.  These routines are not 
visible to the programmer but are available to any program running on the 
Armmite F4 and act the same as built in commands and functions in 
MMBasic.  See  Program Initialisation, CFunctions and the Library earlier in 
this manual for a full explanation. 
LIBRARY SAVE will take whatever is in normal program memory, 
compress it (remove redundant data such as comments) and append it to the 
library area (main program memory is then empty).  The code in the library 
will not show in LIST or EDIT and will not be deleted when a new program 
is loaded or NEW is used. 
LIBRARY DELETE will remove the library and recover the memory used. 
OPTION RESET also effectively removes the library because it removes the 
pointer to its location, however see LIBRARY CHECK below. 
LIBRARY LIST will list the contents of the library.ALL will prevent the 
listing pausing after each page. 
Note that any code in the library that is not contained within a subroutine or 
function will be executed immediately before a program is run.  This can be 
used to initialise constants, set options, etc. 
 
LIBRARY CHECK is unique to the Armmite F4. It is used to check for the 
existance of library code and can locate it and restore its pointer if the 
OPTION PROG_FLASH_SIZE has been lost because of a missing or flat 
backup battery or after an OPTION RESET has been issued. It also verifies 
that the setting for OPTION FLASH_CS allows access to the Windbond flash 
need to support the library. It will not find any Library code after a 
LIBRARY DELETE has been issued. 

LINE 
LINE  x1, y1, x2, y2 [, LW [, 
C]] 

Draws a line starting at the coordinates ‘x1’ and ‘y1’ and ending at ‘x2’ and 
‘y2’. 
‘LW’ is the line’s width and is only valid for horizontal or vertical lines.  It 
defaults to 1 if not specified or if the line is a diagonal.  ‘C’ is an integer 
representing the colour and defaults to the current foreground colour. 
All parameters can now be expressed as arrays and the software will plot the 
number of lines as determined by the dimensions of the smallest array. 'x1', 



Page 155             Armmite F4 User Manual Page 155 

'y1', 'x2', and 'y2' must all be arrays or all be single variables /constants 
otherwise an error will be generated.  'lw' and 'c' can be either arrays or single 
variables/constants.  

LINE INPUT 
LINE INPUT [prompt$,] 
string-variable$ 

Reads an entire line from the console input into ‘string-variable$’.   
‘prompt$’ is a string constant (not a variable or expression) and if specified it 
will be printed first.   
Unlike INPUT, this command will read a whole line, not stopping for comma 
delimited data items. 
A question mark is not printed unless it is part of  ‘prompt$’. 

LINE INPUT #nbr, 
string-variable$ 

Same as the LINE INPUT command except that the input is read from a file 
previously opened for INPUT as ‘#fnbr’ or a serial communications port 
previously opened for INPUT as ‘nbr’.  See the OPEN command. 

LIST 
LIST [fname$] 
or 
LIST ALL [fname$] 

List a program on the serial console.  
LIST on its own will list the program with a pause at every screen full. 
LIST ALL will list the program without pauses.  This is useful if you wish to 
transfer the program in the Armmite to a terminal emulator on a PC that has 
the ability to capture its input stream to a file. If the optional ‘fname$’ is 
specified then that file on the Flash Filesystem or SD Card will be listed 

 

LIST COMMANDS 
LIST COMMANDS [V] 
LIST FUNCTIONS 
LIST FUNCTIONS [V] 

Lists all valid commands.  
 
List all valid functions and operators 
V if appended outputs a count of the actual number of tokens in use.  

LOAD 
LOAD file$ [,R] 

Loads a program called ‘file$’ from the current drive into program memory.  
If the optional suffix  ,R is added the program will be immediately run 
without prompting. 
If an extension is not specified “.BAS” will be added to the file name. 

LOAD DATA  
LOAD DATA fname$, 
address 

Loads the raw binary contents of file fname$ and stores it in memory starting 
at address. Together with SAVE DATA this allows you to very easily to save 
and restore the contents of an array to and from disk. The code tries to protect 
you from crashing the system to the extent possible but there are many ways 
you can misuse the LOAD DATA command if you try. You can use PEEK to 
find out where the data for an array is located in memory. 
See SAVE DATA as well. 

LOAD IMAGE 
LOAD IMAGE file$ [, x, y] 

Load a bitmapped image from the SD card and display it on the LCD panel.  
''file$' is the name of the file and 'x' and 'y' are the screen coordinates for the 
top left hand corner of the image.  If the coordinates are not specified the 
image will be drawn at the top left hand position on the screen. 
If an extension is not specified “.BMP” will be added to the file name. 
All types of the BMP format are supported including black and white and 
true colour 24-bit images. 

LOCAL 
LOCAL variable [, variables] 
See DIM for the full syntax. 

Defines a list of variable names as local to the subroutine or function.   
This command uses exactly the same syntax as DIM and will create variables 
that will only be visible within the subroutine or function.  They will be 
automatically discarded when the subroutine or function exits. 

LONGSTRING 
LONGSTRING 

The LONGSTRING commands allow for the manipulation of strings longer 
than the normal MMBasic limit of 255 characters. 



Page 156             Armmite F4 User Manual Page 156 

Variables for holding long strings must be defined as single dimensioned 
integer arrays with the number of elements set to the number of characters 
required for the maximum string length divided by eight.  The reason for 
dividing by eight is that each integer in an MMBasic array occupies eight 
bytes. Note that the long string routines do not check for overflow in the   
length of the strings.  If an attempt is made to create a string longer than a   
long string variable's size the outcome will be undefined.   

LONGSTRING APPEND 
array%(), string$ 

Append a normal MMBasic string to a long string variable. array%() is a long 
string variable while string$ is a normal MMBasic string expression. 

LONGSTRING CLEAR 
array%() 

Will clear the long string variable array%(). ie, it will be set to an empty 
string. 

LONGSTRING COPY 
dest%(), src%() 

Copy one long string to another. dest%()  is the destination variable and 
src%()  is the source variable. Whatever was in dest%() will be overwritten. 

LONGSTRING CONCAT 
dest%(), src%() 

Concatenate one long string to another. dest%()  is the destination variable 
and src%()  is the source variable. src%() will the added to the end of dest%() 
(the destination will not be overwritten). 

LONGSTRING LCASE 
array%() 

Will convert any uppercase characters in array%() to lowercase. array%() 
must be long string variable. 

LONGSTRING LEFT 
dest%(), src%(), nbr 

Will copy the left hand 'nbr' characters from src%() to dest%() overwriting 
whatever was in dest%(). ie, copy from the beginning of src%(). src%() and 
dest%() must be long string variables. 'nbr' must be an integer constant or 
expression. 

LONGSTRING LOAD 
array%(), nbr, string$ 

Will copy 'nbr' characters from string$ to the long string variable array%() 
overwriting whatever was in array%().  

LONGSTRING MID dest%(), 
src%(), start, nbr 

Will copy 'nbr' characters from src%() to dest%() starting at character 
position 'start' overwriting whatever was in dest%().  ie, copy from the middle 
of src%().  'nbr' is optional and if omitted the characters from 'start' to the end 
of the string will be copied src%() and dest%() must be long string variables. 
'start' and 'nbr' must be an integer constants or expressions. 

LONGSTRING PRINT [#n,] 
src%() 

Prints the longstring stored in ‘src%()’ to the file or COM port opened as 
‘#n’.  If ‘#n’ is not specified the output will be sent to the console. 

LONGSTRING REPLACE 
array%() , string$, start 

Will substitute characters in the normal MMBasic string string$ into an 
existing long string array%() starting at position ‘start’ in the long string. 

LONGSTRING RESIZE 
array%(), newsize 
 
 
LONGSTRING SETBYTE 
array%(), pos, byte 
 
LONGSTRING RIGHT 
dest%(), src%(), nbr 

Sets the stored size of a long string array%() to newsize.This overrides the 
size set by other longstring commands so should be used with caution. 
Typical use would be in using a longstring as a byte array.   
 
Used to set the byte at position pos to the value byte. Pos respects the 
OPTION BASE setting. 
 
Will copy the right hand 'nbr' characters from src%() to dest%() overwriting 
whatever was in dest%(). ie, copy from the end of src%(). src%() and dest%() 
must be long string variables. 'nbr' must be an integer constant or expression. 

LONGSTRING TRIM 
array%(), nbr 

Will trim ‘nbr’ characters from the left of a long string. array%() must be a 
long string variables. 'nbr' must be an integer constant or expression. 

LONGSTRING UCASE Will convert any lowercase characters in array%() to uppercase. array%() 



Page 157             Armmite F4 User Manual Page 157 

array%() must be long string variable. 

LOOP 
LOOP [UNTIL expression] 

Terminates a program loop:  see DO. 

MATH 
MATH 
 
 
 
 
 
 
Simple array arithmetic 
 
MATH SET nbr, array() 
 
 
MATH SCALE in(), scale 
,out() 
 
 
 
MATH ADD in(),num,out() 
 
 
 
 
MATH INTERPOLATE 
array1(), array(2), ratio, 
array3() 
 
 
MATH SLICE sourcearray(),        
[d1] [,d2] [,d3] [,d4] [,d5] 
,destinationarray() 
 
 
 
 
 
 
 
 
 
 
 
MATH INSERT targetarray(),              
[d1] [,d2] [,d3] [,d4] [,d5] , 
sourcearray() 
 
 
 
 
 
 
 
 

The math command performs many simple mathematical calculations that 
can be programmed in BASIC but there are speed advantages to coding 
looping structures in the firmware and there is the advantage that once 
debugged they are there for everyone without re-inventing the wheel. Note: 2 
dimensional maths matrices are always specified DIM matrix(n_columns, 
n_rows) and of course the dimensions respect OPTION BASE. Quaternions 
are stored as a 5 element array w, x, y, z, magnitude. 
 
 
 
Sets all elements in array() to the value nbr. Note this is the fastest way of 
clearing an array by setting it to zero. 
 
This scales the matrix in() by the scalar scale and puts the answer in out(). 
Works for arrays of any dimensionality of both integer and float and can 
convert between. Setting scale to 1 is optimised and is the fastest way of 
copying an entire array 
 
This adds the value 'num' to every element of the matrix in() and puts the   
 answer in out(). Works for arrays of any dimensionality of both integer and   
 float and can convert between. Setting num to 0 is optimised and is a fast   
 way of copying an entire array. in() and out() can be the same array.   
 
This implements the following equation on every array element 
out = (in2 - in1) * ratio + in1. Arrays can have any number of dimensions and 
must be distinct and have the same number of total elements 
 
 
This command copies a specified set of values from a multi-dimensional   
array into a single dimensional array. It is much faster than using a FOR   
loop. The slice is specified by giving a value for all but one of the source   
array indicies and there should be as many indicies in the command,   
including the blank one, as there are dimensions in the source array                           
e.g.   
          OPTION BASE 1   
          DIM a(3,4,5)   
          DIM b(4)   
          MATH SLICE a(), 2, , 3, b()   
                   
Will copy the elements 2,1,3 and 2,2,3 and 2,3,3 and 2,4,3 into array b()   
 
 
This is the opposite of MATH SLICE, has a very similar syntax, and allows   
you, for example, to substitute a single vector into an array of vectors with a   
single instruction   
          e.g.   
          OPTION BASE 1   
          DIM targetarray(3,4,5)   
          DIM sourcearray(4)=(1,2,3,4)   
          MATH INSERT targetarray(), 2, , 3, sourcearray()   
                                                 
Will set elements 2,1,3 = 1 and 2,2,3 = 2 and 2,3,3 = 3 and 2,4,3 = 4   
 
 



Page 158             Armmite F4 User Manual Page 158 

Matrix arithmetic 
 
MATH M_PRINT array() 
 
MATH M_TRANSPOSE in(), 
out() 
 
 
MATH M_MULT in1(), in2(), 
out() 
 
 
MATH M_INVERSE 
array!(), inversearray!() 
 
 
 
Vector arithmetic 
 
MATH V_PRINT array() 
 
MATH V_NORMALISE 
inV(), outV() 
 
 
MATH V_MULT matrix(), 
inV(), outV() 
 
MATH V_CROSS inV1(), 
inV2(), outV()  
 
Quaternion arithmetic 
 
MATH Q_INVERT inQ(), 
outQ()  
 
MATH Q_VECTOR 
x,y,z,outVQ() 
 
MATH Q_CREATE theta, x, 
y, z, outRQ() 
 
MATH Q_EULER yaw, pitch,      
roll, outRQ() 
 
 
 
 
 
MATH Q_MULT inQ1(), 
inQ2(), outQ() 
 
MATH Q_ROTATE , RQ(), 
inVQ(), outVQ() 

 
 
Quick mechanism to print a 2D matrix one row per line. 
 
Transpose matrix in() and put the answer in matrix out(), both arrays must be 
2D but need not be square. If not square then the arrays must be 
dimensioned: in(m,n) out(n,m) 
 
Multiply the arrays in1() and in2() and put the answer in out()c. All arrays 
must be 2D but need not be square. If not square then the arrays must be 
dimensioned: in1(m,n) in2(p,m) ,out(p,n) 
 
This returns the inverse of array!() in inversearray!(). The array must 
be square and you will get an error if the array cannot be inverted i.e. 
(determinant=0) 
 
 
 
 
Quick mechanism to print a small array on a single line 
 
Converts a vector inV() to unit scale and puts the answer in outV() 
(sqr(x*x + y*y +.......)=1 
There is no limit on number of elements in the vector 
 
Multiplies matrix() and vector inV() returning vector outV(). The vectors and 
the 2D matrix can be any size but must have the same cardinality. 
 
Calculates the cross product of two three element vectors inV1() and inV2() 
and puts the answer in outV() 
 
 
 
Invert the quaternion in inQ() and put the answer in outQ() 
 
 
Converts vector x,y,z to a normalised quaternion vector outVQ() with the 
magnitude calculated and stored.  
 
Generates a normalised rotation quaternion outRQ() to rotate quaternion 
vectors around axis x,y,z by an angle of theta. Theta is specified in radians. 
 
Generates a normalised rotation quaternion outRQ() to rotate quaternion   
 vectors as defined by the yaw, pitch and roll angles   
 With the vector in front of the “viewer” yaw is looking from the top of the   
 actor and rotates clockwise, pitch rotates the top away from the camera and   
 roll rotates around the z-axis clockwise.    
 The yaw, pitch and roll angles default to radians.  
 
Multiplies two quaternions inQ1() and inQ2() and puts the answer in outQ() 
 
 
Rotates the source quaternion vector inVQ() by the rotate quaternion RQ() 
and puts the answer in outVQ() 

MATH FFT 
MATH FFT signalarray!(), 
FFTarray!() 
 

Performs a fast fourier transform of the data in “signalarray!”. "signalarray" 
must be floating point and the size must be a power of 2 (e.g. s(1023) 
assuming OPTION BASE is zero) 
"FFTarray" must be floating point and have dimension 2*N where N is the 



Page 159             Armmite F4 User Manual Page 159 

 
 
 
 
 
MATH FFT INVERSE 
FFTarray!(), signalarray!() 
 
 
 
 
 
MATH FFT MAGNITUDE 
signalarray!(),magnitudearray!() 
 
 
 
 
 
 
 
MATH FFT PHASE 
signalarray!(), phasearray!() 

same as the signal array (e.g. f(1,1023) assuming OPTION BASE is zero) 
The command will return the FFT as complex numbers with the real part in 
f(0,n) and the imaginary part in f(1,n) 
 
Performs an inverse fast fourier transform of the data in “FFTarray!”. 
"FFTarray" must be floating point and have dimension 2*N where N must be 
a power of 2 (e.g. f(1,1023) assuming OPTION BASE is zero) with the real 
part in f(0,n) and the imaginary part in f(1,n).  
"signalarray" must be floating point and the single dimension must be the 
same as the FFT array. 
The command will return the real part of the inverse transform in 
"signalarray". 
 
Generates magnitudes for frequencies for the data in “signalarray!”  
"signalarray" must be floating point and the size must be a power of 2 (e.g. 
s(1023) assuming OPTION BASE is zero) 
"magnitudearray" must be floating point and the size must be the same as the 
signal array 
The command will return the magnitude of the signal at various frequencies 
according to the formula: 
frequency at array position N = N * sample_frequency / number_of_samples 
 
Generates phases for frequencies for the data in “signalarray!”.  
"signalarray" must be floating point and the size must be a power of 2 (e.g. 
s(1023) assuming OPTION BASE is zero) 
"phasearray" must be floating point and the size must be the same as the 
signal array. 
The command will return the phase angle of the signal at various frequencies 
according to the formula above. 

MEMORY 
MEMORY 

List the amount of memory currently in use.  For example: 
Flash: 
   1K ( 1%) Program (40 lines) 
 127K (99%) Free 
 
RAM: 
   0K ( 0%) 0 Variables 
   0K ( 0%) General 
 114K (100%) Free 
 
Backup SRAM (4K): 
   4K (100%) Free 
Notes: 
 General memory is used by serial I/O buffers, etc.  
 Memory usage is rounded to the nearest 1K byte. 

See Memory Command section for detailed explanation. 



Page 160             Armmite F4 User Manual Page 160 

MEMORY COPY 
MEMORY COPY 
sourceaddress, destinationaddres, 
numberofbytes 
MEMORY COPY INTEGER 
sourceaddress,destinationaddress, 
numberofintegers[,sourceincreme
nt][,destinationincrement] 
MEMORY COPY FLOAT 
sourceaddress,destinationaddress, 
numberoffloats[,sourceincrement]
[,destinationincrement] 
 

This command will copy one region of memory to another. 
COPY INTEGER and FLOAT will copy eight bytes per operation. 
‘sourceincrement’ is optional and controls the increment of the 
‘sourceaddress’ pointer as the operation is executed. For example, if 
sourceincrement=3 then only every third element of the source will be 
copied. The default is 1. 
‘destinationincrement’ is similar and operates on the ‘destinationaddress’ 
pointer. 

MEMORY SET 
MEMORY SET address, byte, 
Numberofbytes 
MEMORY SET BYTE 
address,byte, numberofbytes 
MEMORY SET SHORT 
address, short, numberofshorts 
MEMORY SET WORD 
address,word, numberofwords 
MEMORY SET INTEGER 
address, integervalue 
,numberofintegers [,increment] 
MEMORY SET FLOAT 
address, floatingvalue 
,numberofloats [,increment]  

This command will set a region of memory to a value. 
BYTE = One byte per memory address. 
SHORT = Two bytes per memory address. 
WORD = Four bytes per memory address. 
FLOAT = Eight bytes per memory address. 
‘increment’ is optional and controls the increment of the ‘address’ pointer as 
the operation is executed. For example, if increment=3 then only every third 
element of the target is set. The default is 1. 

MEMORY PACK/UNPACK 
MEMORY PACK source%(), 
destination%(),number,size 
  
MEMORY UNPACK 
source%(), destination%(), 
number,size 

Memory pack and unpack allow integer values from one array to be 
compressed into another or uncompressed from one to the other. 
The two arrays are always normal integer arrays but the packed array can 
have 2, 4, 8, 16 or 64 values “packed into them. Thus a single integer array 
element could store 2 off 32-bit words, 4 off 16 bit values, 8 bytes, 16 
nibbles, or 64 booleans (bits). 
“number specifies the number of values to be packed or unpacked 
and “size” specifies the number of bits (1,4,8,16,or 32) 

MID$ 
MID$( str$, start [, num]) = 
str2$ 

The characters in 'str$', beginning at position 'start', are replaced by the 
characters in 'str2$'.  The optional 'num' refers to the number of characters in 
str$ to be replaced. If str2$ is shorter or longer than the selected range then 
the length of str$ is adjusted to accommodate the replacement string. If num 
is omitted then the number of characters replaced defaults to the length of 
str2$. 

MKDIR 
MKDIR dir$ 

Make, or create, the directory ‘dir$’ on the SD card. 

NAME … AS 
NAME old$ AS new$ 

Rename a file or a directory from ‘old$’ to ‘new$’.  Both are strings. 
A directory path can be used in both 'old$' and 'new$'.  If the paths differ the 
file specified in 'old$' will be moved to the path specified in 'new$' with the 
file name as specified. 

NEW 
NEW 

Deletes the program in flash, clears all variables including saved variables 
and resets the interpreter (ie, closes files, serial ports, etc). 



Page 161             Armmite F4 User Manual Page 161 

NEXT 
NEXT [counter-variable] [, 
counter-variable], etc 

NEXT comes at the end of a FOR-NEXT loop; see FOR.   
The ‘counter-variable’ specifies exactly which loop is being operated on.  If 
no ‘counter-variable’ is specified the NEXT will default to the innermost 
loop.  It is also possible to specify multiple variables as in:  NEXT x, y, z 

ON ERROR 
ON ERROR ABORT 
or 
ON ERROR IGNORE  
or  
ON ERROR SKIP [nn] 
or  
ON ERROR CLEAR 

This controls the action taken if an error occurs while running a program and 
applies to all errors discovered by MMBasic including syntax errors, wrong 
data, missing hardware, SD Card access, etc. 
ON ERROR ABORT will cause MMBasic to display an error message, abort 
the program and return to the command prompt.  This is the normal behaviour 
and is the default when a program starts running. 
ON ERROR IGNORE will cause any error to be ignored. 
ON ERROR SKIP will ignore an error in a number of commands (specified by 
the number 'nn') executed following this command.  'nn' is optional, the default 
if not specified is one.  After the number of commands has completed (with an 
error or not) the behaviour of MMBasic will revert to ON ERROR ABORT. 
If an error occurs and is ignored/skipped the read only variable MM.ERRNO 
will be set to non zero and MM.ERRMSG$ will be set to the error message that 
would normally be generated.  These are reset to zero and an empty string by 
ON ERROR CLEAR.  They are also cleared when the program is run and 
when ON ERROR IGNORE and ON ERROR SKIP are used. 
ON ERROR IGNORE can make it very difficult to debug a program so it is 
strongly recommended that only ON ERROR SKIP be used. 

ON … GOTO 
ON nbr GOTO | GOSUB 
target[,target, target,...] 

See Obsolete Commands and Functions 
ON either branches (GOTO) or calls a subroutine (GOSUB) based on the 
rounded value of 'nbr'; if it is 1, the first target is called, if 2, the second target 
is called, etc.  Target can be a line number or a label. 
New programs should use SELECT CASE. 

ON KEY 
ON KEY target 
or 
ON KEY ASCIIcode, target 

The first variant of the command sets an interrupt which will call 'target' user 
defined subroutine whenever there is one or more characters waiting in the 
serial console input buffer. 
Note that all characters waiting in the input buffer should be read in the 
interrupt subroutine otherwise another interrupt will be automatically 
generated as soon as the program returns from the interrupt.   
This second variant allows you to associate an interrupt routine with a 
specific key press. This operates at a low level for the serial console and if 
activated the key does not get put into the input buffer but merely triggers the 
interrupt. It uses a separate interrupt from the simple ON KEY command so 
can be used at the same time if required. In both variants, to disable the 
interrupt use numeric zero for the target, i.e.:     
 ON KEY 0. or ON KEY ASCIIcode, 0   

ONEWIRE 
ONEWIRE RESET pin 
or 
ONEWIRE WRITE pin, flag, 
length, data [, data…] 
or 
ONEWIRE READ pin, flag, 
length, data [, data…] 

Commands for communicating with 1-Wire devices. 
ONEWIRE RESET will reset the 1-Wire bus 
ONEWIRE WRITE will send a number of bytes 
ONEWIRE READ will read a number of bytes 
'pin' is the I/O pin (located in the rear connector) to use.  It can be any pin 
capable of digital I/O. 
'flag' is a combination of the following options: 

1 - Send reset before command 
2 - Send reset after command 
4 - Only send/recv a bit instead of a byte of data 



Page 162             Armmite F4 User Manual Page 162 

8 - Invoke a strong pullup after the command (the pin will be set high 
and open drain disabled) 

'length' is the length of data to send or receive 
'data' is the data to send or variable to receive.  The number of data items 
must agree with the length parameter. See also Appendix C. 

 
 
 
 
 
OPEN 
OPEN fname$ FOR mode AS 
[#]fnbr 

 
 
 
Opens a file for reading or writing. 
‘fname’ is the filename with an optional extension, separated by a dot (.).  
Long file names with upper and lower case characters are supported. 
A directory path can be specified with the backslash as directory separators.  
The parent of the current directory can be specified by using a directory name 
of .. (two dots) and the current directory with . (a single dot). 
For example OPEN "..\dir1\dir2\filename.txt" FOR INPUT AS #1 
‘mode’ is INPUT, OUTPUT, APPEND or RANDOM. 
The maximum filename/directory length is 63 chars to reduce the buffer 
needed so don't use filenames > 63 chars 
INPUT will open the file for reading and throw an error if the file does not 
exist.  OUTPUT will open the file for writing and will automatically 
overwrite any existing file with the same name.   
APPEND will also open the file for writing but it will not overwrite an 
existing file; instead any writes will be appended to the end of the file.  If 
there is no existing file the APPEND mode will act the same as the OUTPUT 
mode (i.e. the file is created then opened for writing). 
RANDOM will open the file for both read and write and will allow random 
access using the SEEK command.  When opened the read/write pointer is 
positioned at the end of the file. 
‘fnbr’ is the file number (1 to 10).  The # is optional.  Up to 10 files can be 
open simultaneously.  The INPUT, LINE INPUT, PRINT, WRITE and 
CLOSE commands as well as the EOF() and INPUT$() functions all use 
‘fnbr’ to identify the file being operated on. 
See also OPTION ERROR and MM.ERRNO for error handling. 



Page 163             Armmite F4 User Manual Page 163 

OPEN comspec$ AS [#]fnbr Will open a serial communications port for reading and writing.  Four ports 
are available (COM1: , COM2: ,COM3: and COM4:) all can be open 
simultaneously.   If OPTION SERIAL CONSOLE is used then COM1: is not 
available. 
Using ‘fnbr’ the port can be written to and read from using any command or 
function that uses a file number.  ‘comspec$’ is the communication 
specification and is a string (it can be a string variable) specifying the serial 
port to be opened and optional parameters.  The default is 9600 baud, 8 data 
bits, no parity and one stop bit. 
It has the form    "COMn: baud, buf, int, int-trigger, 7BIT, 
(ODD or EVEN), OC, S2"       
Where: 

 ‘n’ is the serial port number for either COM1:, COM2: ,COM3: or 
COM4:. 

 ‘baud’ is the baud rate.  This can be any value between 2400 (the 
minimum) and 1843200 Hz.  Default is 9600. 

 ‘buf’ is the receive buffer size in bytes (default size is 256).  The 
transmit buffer is fixed at 256 bytes. 

 ‘int’ is a user defined subroutine which will be called when the serial 
port has received some data.  The default is no interrupt. 

 ‘int-trigger’ sets the trigger condition for calling the interrupt 
subroutine.  If it is a normal number the interrupt subroutine will be 
called when this number of characters has arrived in the receive queue. 

All parameters except the serial port name (COMn:) are optional.  If any one 
parameter is left out then all the following parameters must also be left out 
and the defaults will be used.   
Five options can be added to the end of  'comspec$' 

 ‘OC’ will force the transmit pin to be open collector.  The default is 
normal (0 to 3.3V) output. 

 'S2' specifies that two stop bits will be sent following each character 
transmitted. 

 '7BIT' will specify that 7 bit transmit and receive is to be used. 
 ‘ODD’ will specify that an odd parity bit will be appended (8 bits will 

be transmitted if 7BIT is specified, otherwise 9) 
 ‘EVEN’ will specify that an even parity bit will be appended (8 bits 

will be transmitted if 7BIT is specified, otherwise 9) 
 

OPEN comspec$ AS GPS 
[,timezone_offset]  [,monitor] 

Will open a serial communications port for reading from a GPS receiver. See 
the GPS function for details. The sentences interpreted are GPRMC, 
GNRMC, GPCGA and GNCGA. 
The timezone_offset parameter is used to convert UTC as received from the 
GPS to the local timezone. If omitted the timezone will default to UTC. The 
timezone_offset can be a any number between -12 and 14 allowing the time 
to be set correctly even for the Chatham Islands in New Zealand (UTC 
+12:45).  
If the monitor parameter is set to 1 then all GPS input is directed to the 
console. This can be stopped by closing the GPS channel.  

OPTION 
OPTION 

See the section Option Settings  earlier in this manual. 

PAGE 
PAGE #n [,#n2, #n3, etc] 

Now  GUI PAGE,   
PAGE is accepted but converted to GUI PAGE 



Page 164             Armmite F4 User Manual Page 164 

PAUSE 
PAUSE delay 

Halt execution of the running program for ‘delay’ ms.  This can be a fraction.  
For example, 0.2 is equal to 200 µs.  The maximum delay is 2147483647 ms 
(about 24 days). 
Note that interrupts will be recognised and processed during a pause. 

PIN 
PIN( pin ) = value 

For a ‘pin’ configured as digital output this will set the output to low (‘value’  
is zero) or high (‘value’ non-zero).  You can set an output high or low before 
it is configured as an output and that setting will be the default output when 
the SETPIN command takes effect. 

See the function PIN() for reading from a pin and the command 
SETPIN for configuring it. 

PIXEL 
PIXEL  x,  y  [,c] 

Set a pixel on an attached LCD panel to a colour.    
'x' is the horizontal coordinate and 'y' is the vertical coordinate of the pixel.  
'c' is a 24 bit number specifying the colour.   
'c' is optional and if omitted the current foreground colour will be used. 
All parameters can be expressed as arrays and the software will plot the 
number of pixels as determined by the dimensions of the smallest array. 'x' and 
'y' must both be arrays or both be single variables /constants otherwise an error 
will be generated. 'c'  can be either an arrays or a single variable or constant. 
See the chapter Using an LCD Panel for a definition of the colours and 
graphics coordinates.   

PLAY 
PLAY TONE left, right [, dur] 

Generates two separate sine waves on the sound output left and right 
channels.  The tone plays in the background (the program will continue 
running after this command). 
'left' and 'right' are the frequencies in Hz to use for the left and right channels. 
'dur' specifies the number of milliseconds that the tone will sound for.  
MMBasic will round the time to the next nearest complete waveform of the 
first frequency specified so that the tone will always finish with the DC level 
in the middle and no discontinuity.  If the duration is not specified, the tone 
will continue until explicitly stopped or the program terminates. 
The frequency can be from 1Hz to 20KHz and is very accurate (it is based on 
a crystal oscillator).  The frequency can be changed at any time by issuing a 
new PLAY TONE command. 

PLAY WAV file$ [, interrupt] 
or 
PLAY FLAC file$ [, interrupt] 
 

Play an audio file on the audio (DAC) output. 
'file$' is the file to play (the appropriate extension will be appended if 
missing).  The file is played in the background, 'interrupt' is optional and is 
the name of a subroutine that will be called when the file has finished 
playing.  
For WAV files MMBasic will automatically compensate for the frequency, 
number of bits and number of channels of the WAV file.   
For FLAC files the supported frequencies are: 

44100Hz 16-bit (CD quality) and 24-bit 
48000Hz 16-bit and 24-bit 
88200Hz 16-bit and 24-bit 
96000Hz 24-bit 

Maximums for FLAC and WAV file playback are 96KHz 24-bit. Both will 
auto-configure to the file provided.  As an indication, 96KHz 24-bit FLAC 
uses just over 50% of the CPU's resources. 
 

PLAY PAUSE PLAY PAUSE will temporarily halt the currently playing file or tone. 



Page 165             Armmite F4 User Manual Page 165 

PLAY RESUME 
PLAY STOP 

PLAY RESUME will resume playing a sound that was paused. 
PLAY STOP will terminate the playing of the file or tone.  When the 
program terminates for whatever reason the sound output will also be 
automatically stopped. 

PLAY VOLUME left, right Will adjust the volume of the audio output.   
'left' and 'right' are the levels to use for the left and right channels and can be 
between 0 and 100 with 100 being the maximum volume.  There is a linear 
relationship between the specified level and the output. 
The volume defaults to maximum when a program is run. 

POKE 
POKE BYTE addr%, byte 
 
 
POKE SHORT addr%, short% 
  
POKE WORD addr%, word% 
 
POKE INTEGER addr%, int% 
POKE FLOAT addr%, float! 
 
POKE VAR var, offset, byte 
 
POKE VARTBL, offset, byte 
 
POKE DISPLAY command 
[,data1] [,data2] [,datan] 
 
 
POKE DISPLAY HRES n 
POKE DISPLAY VRES n 

Will set a byte or a word within the CPU’s virtual memory space. 
POKE BYTE will set the byte (ie, 8 bits) at the memory location 'addr%' to 
'byte'.  'addr%' should be an integer. 
POKE SHORT will set the short integer (ie, 16 bits) at the memory location 
'addr%' to 'word%'.  'addr%' and short%' should be integers. 
POKE WORD will set the word (ie, 32 bits) at the memory location 'addr%' 
to 'word%'.  'addr%' and 'word%' should be integers. 
POKE INTEGER will set the MMBasic integer (ie, 64 bits) at the memory 
location 'addr%' to int%'.  'addr%' and int%' should be integers. 
POKE FLOAT will set the word (ie, 64 bits) at the memory location 'addr%' 
to 'float!'.  'addr%' should be an integer and 'float!' a floating point number. 
POKE VAR will set a byte in the memory address of 'var'.  'offset' is the 
±offset from the address of the variable. An array is specified as var(). 
POKE VARTBL will set a byte in MMBasic's variable table.  'offset' is the 
±offset from the start of the variable table.  Note that a comma is required 
after the keyword VARTBL. 
This command sends commands and associated data to the display controller 
for a connected display. This allows the programmer to change parameters of 
how the display is configured. e.g. POKE DISPLAY &H28 will turn off an 
SSD1963 display and POKE DISPLAY &H29 will turn it back on again. 
 
These commands change the stored value of MM.HRES anmd MM.VRES  
allowing the programmer to configure non-standard displays. 
 

POLYGON 
POLYGON n, xarray%(), 
yarray%() [, bordercolour] [, 
fillcolour] 
 
POLYGON n(), xarray%(), 
yarray%() [, bordercolour()] [, 
fillcolour()] 
 
POLYGON n(), xarray%(), 
yarray%() [, bordercolour] [, 
fillcolour] 
 
 

Draws a filled or outline polygon with n xy-coordinate pairs in xarray%() and 
yarray%().  If ‘fillcolour’ is omitted then just the polygon outline is drawn.  If 
‘bordercolour’ is omitted then it will default to the current default foreground 
colour. 
If the last xy-coordinate pair is not the same as the first the firmware will 
automatically create an additional xy-coordinate pair to complete the 
polygon.  The size of the arrays should be at least as big as the number of x,y 
coordinate pairs. 
'n' can be an array and the colours can also optionally be arrays as follows: 
POLYGON n(), xarray%(), yarray%() [, bordercolour()] [, fillcolour()] 
POLYGON n(), xarray%(), yarray%() [, bordercolour] [, fillcolour] 
The size of the n array determines the number of polygons that will be drawn.  
The elements of array n() define the number of xy-coordinate pairs in each of 
the polygons.  e.g DIM n(1)=(3,3) would define that 2 polygons are to be 
drawn with three vertices each.  The xy-coordinate pairs for all the polygons 
are stored in xarray%() and yarray%().  The xarray%() and yarray%() 
parameters must have at least as many elements as the total of the values in 
the n array. 



Page 166             Armmite F4 User Manual Page 166 

Each polygon can be closed with the first and last elements the same. If the 
last element is not the same as the first the firmware will automatically create 
an additional xy-coordinate pair to complete the polygon.  If fill colour is 
omitted then just the polygon outlines are drawn. 
The colour parameters can be a single value in which case all polygons are 
drawn in the same colour or they can be arrays with the same cardinality as n. 
In this case each polygon drawn can have a different colour of both border 
and/or fill. 
For example, this will draw 3 triangles in yellow, green and red: 

DIM c%(2)=(3,3,3) 
DIM x%(8)=(100,50,150,100,50,150,100,50,150) 
DIM y%(8)=(50,100,100,150,200,200,250,300,300) 
DIM fc%(2)=(rgb(yellow),rgb(green),rgb(red)) 

POLYGON c%(),x%(),y%(),fc%(),fc%() 

PORT 
PORT(start, nbr [,start, nbr]…) 
= value 

Sets a number of I/O pins simultaneously (ie, with one command). 
'start' is an I/O pin number and the lowest bit in 'value' (bit 0) will be used to 
set that pin.  Bit 1 will be used to set the pin 'start' plus 1, bit 2 will set pin 
'start'+2 and so on for 'nbr' number of bits.  Each start/nbr pair defines a set of 
consecutively numbered I/O pins and any I/O pin that is invalid or not 
configured as an output will cause an error.  The start/nbr pair can be 
repeated up to 25 times if additional groups of consecutive  output pins needs 
to be added. 
For example; PORT(15, 4, 23, 4) = &B10000011 
Will set eight I/O pins.  Pins 15 and 16 will be set high while 17, 18, 23, 24 
and 25 will be set to a low and finally 26 will be set high. 
This command can be used to conveniently communicate with parallel 
devices like LCD displays.  Any number of I/O pins (and therefore bits) can 
be used from 1 to the number of I/O pins on the chip.  
See the PORT function to simultaneously read from a number of pins. 

PRINT 
PRINT expression  
[[,; ]expression] … etc 

Outputs text to the console. Multiple expressions can be used and must be 
separated by either a: 

 Comma (,) which will output the tab character 
 Semicolon (;) which will not output anything (it is just used to separate 

expressions). 
 Nothing or a space which will act the same as a semicolon. 

A semicolon (;) at the end of the expression list will suppress the automatic 
output of a carriage return/ newline at the end of a print statement. 
When printed, a number is preceded with a space if positive or a minus (-) if 
negative but is not followed by a space.  Integers (whole numbers) are printed 
without a decimal point while fractions are printed with the decimal point and 
the significant decimal digits.  Large floating point numbers (greater than six 
digits) are printed in scientific number format. 
The function TAB() can be used to space to a certain column and the string 
functions can be used to justify or otherwise format strings. 

PRINT #nbr, expression  
[[,; ]expression] … etc 

Same as the normal PRINT command except that the output is directed to a 
file previously opened for OUTPUT or APPEND as ‘#fnbr’ or to a serial 
communications port previously opened as ‘nbr’.  See the OPEN command. 

PRINT #GPS, string$ Outputs a NMEA string to an opened GPS device. The string must start with 
a $ character and end with a * character. The checksum is calculated 
automatically by the firmware and is appended to the string together with the 
carriage return and line feed characters required. 



Page 167             Armmite F4 User Manual Page 167 

PULSE 
PULSE pin, width 

Will generate a pulse on 'pin' with duration of 'width' ms.  'width' can be a 
fraction.  For example, 0.01 is equal to 10µs and this enables the generation 
of very narrow pulses. 
The generated pulse is of the opposite polarity to the state of the I/O pin when 
the command is executed.  For example, if the output is set high the PULSE 
command will generate a negative going pulse.  Notes:  
 'pin' must be configured as an output. 
 For a pulse of less than 3 ms the accuracy is ± 1 µs. 
 For a pulse of 3 ms or more the accuracy is ± 0.5 ms. 
A pulse of 3 ms or more will run in the background.  Up to five different 
and concurrent pulses can be running in the background and each can have 
its time changed by issuing a new PULSE command or it can be 
terminated by issuing a PULSE command with zero for 'width'. 

PWM 
PWM 1, freq, 1A 
PWM 1, freq, 1A, 1B 
PWM 1, freq, 1A, 1B,1C 
  
PWM 2, freq, 2A 
PWM 2, freq, 2A, 2B 
PWM 2, freq, 2A, 2B, 2C 
  
PWM 3, freq, 3A 
PWM 3, freq, 3A, 3B 
 
 
 
 
PWM channel, STOP 
 

Generate a pulse width modulated (PWM) output for driving analog circuits, 
sound output, etc.   
There are a total of eight outputs designated as PWM. (they are also used for 
the SERVO command).  Controller 1 can have one, two or three outputs, 
controller 2 can have one, two or three outputs, while controller 3 can have 
one or two outputs. All three controllers are independent and can be turned on 
and off and have different frequencies. 
'1', '2' or ‘3’ is the controller number and ‘freq’ is the output frequency.  1A, 
1B and 1C are the duty cycle for each of the controller 1 outputs, while 2A, 
2B and 2C are the duty cycle for the controller 2 outputs. 3A and 3B are for 
controller 3. The specified I/O pins will be automatically configured as 
outputs while any others will be unaffected and can be used for other duties. 
The duty cycle for each output is independent of the others and is specified as 
a percentage.  If it is close to zero the output will be a narrow positive pulse, 
if 50 a square wave will be generated and if close to 100 it will be a very 
wide positive pulse   
Minimum frequency is 1Hz, maximum is 20MHz. Duty cycle and frequency 
accuracy will depend on frequency. The output will run continuously in the 
background while the program is running and can be stopped using the STOP 
command.  The frequency and duty cycle can be changed at any time 
(without stoping the output) by issuing a new PWM command.   
The PWM function will take control of any specified outputs and when 
stopped the pins will be returned to a high impedance "not configured" state. 

RBOX 
RBOX  x,  y,  w,  h  [, r]  [,c] 
[,fill] 
 

Draws a box with rounded corners on the LCD  starting at 'x' and 'y' which is 
'w' pixels wide and 'h' pixels high.   
'r' is the radius of the corners of the box.  It defaults to 10. 
'c' specifies the colour and defaults to the default foreground colour if not 
specified. 
'fill' is the fill colour.  It can be omitted or set to -1 in which case the box will 
not be filled. 
All parameters can now be expressed as arrays and the software will plot the 
number of boxes as determined by the dimensions of the smallest array. 'x', 
'y', 'w', and 'h' must all be arrays or all be single variables /constants 
otherwise an error will be generated. 'r', 'c', and 'fill' can be either arrays or 
single variables/constants. 
See the chapter "Basic Drawing Commands" for a definition of the colours 
and graphics coordinates. 

READ 
READ variable[, variable]... 

Reads values from DATA statements and assigns these values to the named 
variables.  Variable types in a READ statement must match the data types in 



Page 168             Armmite F4 User Manual Page 168 

DATA statements as they are read.   
Arrays can be used as variables (specified with empty brackets, eg, a()) and  
in that case the size of the array is used to determine how many elements are   
to be read.  If the array is multidimensional then the leftmost dimension will   
be the fastest moving. 
e.g READ a, b, c(), s$(), t$ 
This will read numbers into a and b, it will then fill the array c() with 
numbers It will then fill the array s$() with strings and then finally load 
the string t$. In all cases the firmwware uses the size of an array to 
determine how many elements are to be read. 
See also DATA and RESTORE. 
If you want to read from DATA statements in the library you must use the 
RESTORE command before the first READ command. This will reset the 
pointer to the library space. 

READ SAVE|RESTORE 
READ SAVE 
or 
READ RESTORE 

READ SAVE will save the virtual pointer used by the READ command to 
point to the next DATA to be read. READ RESTORE will restore the pointer 
that was previously saved.  
This enables subroutines to READ data and then restore the read pointer so as 
not to disturb other parts of the program that may be reading the same data 
statements. These commands can be nested. 

REM 
REM string 

REM allows remarks to be included in a program.  
 Note the Microsoft style use of the single quotation mark to denote 

remarks is also supported and is preferred. 

RESTORE 
RESTORE [line] 

Resets the line and position counters for the READ statement. 
If ‘line’ is specified the counters will be reset to the beginning of the 
specified line.  ‘line’ can be a line number or label. 
A variable can also be used as the parameter. In that case a numerical variable 
should be used for a line number and a string variable for a label.  
If ‘line’ is not specified the counters will be reset to the start of the program. 

RMDIR 
RMDIR dir$ 

Remove, or delete, the directory ‘dir$’ on the SD card. 

RUN 
RUN [file$][,cmdline$] 
 

Run a program. 
If file$ is not supplied then run the program currently held in program 
memory. 
If file$ is supplied then run the named file from the SD Card filesystem; if 
file$ does not contain a '.BAS' extension then one will be automatically 
added. 
If cmdline$ is supplied then pass its value to the MM.CMDLINE$ constant 
of the program when it runs. 
If cmdline$ is not supplied then an empty string value is passed to 
MM.CMDLINE$. 
• Both file$ and cmdline$ may be supplied as string expressions. 

SAVE 
SAVE file$ 

Saves the program to the current working directory of the SD card as ‘file$’.  
Example: SAVE “TEST.BAS”  
If an extension is not specified “.BAS” will be added to the file name. 

SAVE DATA 
SAVE DATA fname$, 

Saves size bytes to file fname$ starting from  address. Data is saved in raw 
binary format. Together with LOAD DATA this allows you to very easily to 



Page 169             Armmite F4 User Manual Page 169 

address, size save and restore the contents of an array to and from disk. The code tries to 
protect you from crashing the system to the extent possible but there are 
many ways you can misuse the LOAD DATA command if you try. 
See LOAD DATA as well. 

SAVE IMAGE 
SAVE IMAGE file$ [, x, y, w, 
h] 

Save the current image on the LCD display as a 24-bit BMP file. 
'file$' is the name of the file.  If an extension is not specified “.BMP” will be 
added to the file name.   
‘x’, ‘y’, ‘w’ and ‘h’ are optional and are the coordinates (x and y are the top 
left coordinate) and dimensions (width and height) of the area to be saved.  If 
not specified the whole screen will be saved. 

SEEK 
SEEK [#]fnbr, pos 

Will position the read/write pointer in a file that has been opened on the SD 
card for RANDOM access to the 'pos' byte.   
The first byte in a file is numbered one so   SEEK #5,1 will position the 
read/write pointer to the start of the file. 

SELECT CASE 
SELECT CASE value 
   CASE testexp [[, testexp] 
…] 
        <statements> 
        <statements> 
   CASE ELSE 
        <statements> 
        <statements> 
END SELECT 

Executes one of several groups of statements, depending on the value of an 
expression.  'value' is the expression to be tested.  It can be a number or string 
variable or a complex expression.  'testexp' is the value that 'exp' is to be 
compared against.  It can be: 
 A single expression (ie, 34, "string" or PIN(4)*5) to which it may equal 
 A range of values in the form of two single expressions separated by the 

keyword "TO" (ie, 5 TO 9 or "aa" TO "cc") 
 A comparison starting with the keyword "IS" (which is optional).  For 

example:  IS > 5, IS <= 10. 
When a number of test expressions (separated by commas) are used the 
CASE statement will be true if any one of these tests evaluates to true. 
If 'value' cannot be matched with a 'testexp' it will be automatically matched to 
the CASE ELSE.  If CASE ELSE is not present the program will not execute 
any <statements> and continue with the code following the END SELECT. 
When a match is made the <statements> following the CASE statement will 
be executed until END SELECT or another CASE is encountered when the 
program will then continue with the code following the END SELECT. 
An unlimited number of CASE statements can be used but there must be only 
one CASE ELSE and that should be the last before the END SELECT. 
Example: 

SELECT CASE nbr% 
  CASE 4, 9, 22, 33 TO 88 
       statements 
  CASE IS < 4, IS > 88, 5 TO 8 
       statements 
  CASE ELSE 
       statements 
END SELECT  

Each SELECT CASE must have one and one only matching END SELECT 
statement.  Any number of SELECT…CASE statements can be nested inside 
the CASE statements of other SELECT…CASE statements. 

SERVO 
SERVO 1, freq, 1A 
SERVO 1, freq, 1A, 1B 
SERVO 1, freq, 1A, 1B, 1C 
  
SERVO 2, freq, 2A 

Generate a constant stream of positive going pulses for driving a servo.   
The Armmite F4 has three servo controllers with the first and second being 
able to control up to three servos and the third two servos.  All controllers are 
independent and can be turned on and off and have different frequencies.  
This command uses the I/O pins that are designated as PWM. (the two 
commands are very similar). 
'1', ‘2’ or '3' is the controller number. ‘freq’ is the output frequency (between 



Page 170             Armmite F4 User Manual Page 170 

SERVO 2, freq, 2A, 2B 
SERVO 2, freq, 2A, 2B, 2C 
  
SERVO 3, freq, 3A 
SERVO 3, freq, 3A, 3B 
 
 
 
 
SERVO channel, STOP 
 

20Hz and 1000 Hz) and is optional.  If not specified it will default to 50 Hz  
1A, 1B and 1C are the pulse widths for each of the controller 1 outputs while 
2A ,2B and 2C are the pulse widths for the controller 2 outputs. 3A and 3B 
are the output for controller 3.The specified I/O pins will be automatically 
configured as outputs while any others will be unaffected and can be used for 
other duties. 
The pulse width for each output is independent of the others and is specified 
in milliseconds, which can be a fractional number (ie, 1.536).    For accurate 
positioning the output resolution is about 0.005 ms.  The minimum value is 
0.01ms while the maximum is 18.9ms.   Most servos will accept a range of 
0.8ms to 2.2ms.  The output will run continuously in the background while 
the program is running and can be stopped using the STOP command.  The 
pulse widths of the outputs can be changed at any time (without stoping the 
output) by issuing a new SERVO command.   
The SERVO function will take control of any specified outputs and when 
stopped the pins will be returned to a high impedance "not configured" state. 
 

SETPIN 
SETPIN pin, cfg [, option] 

Will configure an external I/O pin. 
'pin' is the I/O pin to configure, ‘cfg’ is the mode that the pin is to be set to 
and 'option' is an optional parameter.  'cfg' is a keyword and can be any one 
of the following: 

OFF Not configured or inactive 
AIN Analog input (ie, measure the voltage on the input).  'option' 

can be used to specify the number of bits in the conversion.  
Valid values are 8, 10 and 12. The default (if not specified) is 
12 bits.  The more bits the longer the conversion will take. 
Valid for pins PA0, PA1, PA2, PA3, PC0, PC1, PC2, PC3, 
PA6, PA7, PC4, PC5, PB0  

DIN Digital input 
If 'option' is omitted the input will be high impedance 
If 'option' is the keyword "PULLUP" a simulated resistor will 
be used to pull up the input pin to 3.3V If the keyword 
"PULLDOWN" is used the pin will be pulled down to zero 
volts.  The pull up/down is a constant current of about 50µA. 

                  Pull-up and pull-down resistors are designed with a true 
resistance in series with a switchable PMOS/NMOS. This   

                   MOS/NMOS contribution to the series resistance is minimum 
(~10% order)  

                   Valid for all available 47 pins 
FIN Frequency input  

'option' can be used to specify the gate time (the length of time 
used to count the input cycles).  It can be any number between 10 

ms and 100000 ms.  Note that the PIN() function will always 
return the frequency correctly scaled in Hz regardless of the gate 
time used.  If 'option' is omitted the gate time will be 1 second. 

                  Valid for pins PE1, PE3, PE4, PA8 
 
PIN Period input  

'option' can be used to specify the number of input cycles to 
average the period measurement over.  It can be any number 
between 1 and 10000.  Note that the PIN() function will always 
return the average period of one cycle correctly scaled in ms 
regardless of the number of cycles used for the average.  If 
'option' is omited the period of just one cycle will be used. 



Page 171             Armmite F4 User Manual Page 171 

                   Valid for pins PE1, PE3, PE4, PA8 
 
CIN Counting input 
                   Valid for pins PE1, PE3, PE4, PA8 
                   ‘option’ can be used to specify which edge triggers the count   

and if any pullup or pulldown is enabled   
                   1 specifies a rising edge with pulldown,  
                  2 specifies a falling edge with pullup,  
                  3 specifies that both a falling and rising edge will trigger a           

count with no pullup or pulldown applied,  
                  4 specifies both edges but with a pulldown and  
                  5 specifies both edges but with a pullup applied. 
                  If ‘option’ is omitted a rising edge will trigger the count and a 

pulldown is enabled.  
  
DOUT Digital output  

'option' can be "OC" in which case the output will be open 
collector (or more correctly open drain).  The functions PIN() 
and PORT() can also be used to return the value on one or 
more output pins . 

Previous versions of MMBasic used numbers for 'cfg' and the mode OOUT.  
For backwards compatibility they will still be recognised. 
See the function PIN() for reading inputs and the statement PIN()= for setting 
an output.  See the command below if an interrupt is configured. 

SETPIN pin, cfg, target [, 
option] 

Will configure ‘pin’ to generate an interrupt according to ‘cfg’.  Any I/O pin 
capable of digital input can be configured to generate an interrupt with a 
maximum of ten interrupts configured at any one time. 
'cfg' is a keyword and can be any one of the following: 

OFF Not configured or inactive 
INTH Interrupt on low to high input 
INTL Interrupt on high to low input 
INTB Interrupt on both (ie, any change to the input) 

‘target' is a user defined subroutine which will be called when the event 
happens.   Return from the interrupt is via the END SUB or EXIT SUB 
commands.  'option' can be the keywords "PULLUP" or "PULLDOWN" as 
specified for a normal input pin (SETPIN pin DIN).  If 'option' is omitted the 
input will be high impedance.   
This mode also configures the pin as a digital input so the value of the pin can 
always be retrieved using the function PIN().  

SETTICK 
SETTICK period, target [, nbr]  
 
 
 
 
 
SETTICK PAUSE, target 
[, nbr] 
SETTICK RESUME, target 
[, nbr] 

This will setup a periodic interrupt (or "tick").  Four tick timers are available 
('nbr' = 1, 2, 3 or 4).  'nbr' is optional and defaults to timer number 1. 
The time between interrupts is ‘period’ milliseconds and ‘target' is the 
interrupt subroutine which will be called when the timed event occurs.  The 
period can range from 1 to 2147483647 ms (about 24 days).   
These interrupts can be disabled by setting ‘period’ to zero  
(ie,  SETTICK 0, 0, 3  will disable tick timer number 3). 
Pause or resume the specified timer.  When paused the interrupt is delayed 
but the current count is maintained. 
 
 
 



Page 172             Armmite F4 User Manual Page 172 

  
 
SORT 
SORT array() [,indexarray] 
[,flags] [,startposition] 
[,elementstosort] 
 

 
This command takes an array of any type (integer, float or string) and sorts it 
into ascending order in place.  
It has an optional parameter ‘indexarray%()’. If used this must be an integer 
array of the same size as the array to be sorted. After the sort this array will 
contain the original index position of each element in the array being sorted 
before it was sorted.  Any data in the array will be overwritten. 
 
flag values are: 
bit0:  0 (default if omitted) normal sort - 1 reverse sort 
bit1:  0 (default) case dependent - 1 sort is case independent 
 
startposition defines which element in the array to start the sort. Default is 0 
(OPTION BASE 0) or 1 (OPTION BASE 1) 
 
elementstosort defines how many elements in the array should be sorted. 
Default is all elements after the startposition 
 
This allows connected arrays to be sorted.  See the section Sorting Data in 
the tutorial Programming with the Colour Maximite 2 for an example. 

SPI 
SPI OPEN speed, mode, bits 
or 
SPI READ nbr, array() 
or 
SPI WRITE nbr, data1, data2, 
data3, … etc 
or 
SPI WRITE nbr, string$ 
or 
SPI WRITE nbr, array() 
or 
SPI CLOSE 

Communications via an SPI channel.  The command SPI refers to channel 1.  
The command SPI2 refers to channel 2 and has an identical syntax. 
'nbr' is the number of data items to send or receive 
'data1', 'data2', etc can be float or integer and in the case of WRITE can be a 
constant or expression. 
If 'string$' is used 'nbr' characters will be sent. 
'array' must be a single dimension float or integer array and 'nbr' elements 
will be sent or received. 
See Appendix D for the details. 

SPI2 As for SPI but for the second channel. 

SPRITE 
SPRITE 

Alias for BLIT. See BLIT command for syntax. 

STATIC 
STATIC variable [, variables] 
See DIM for the full syntax. 

Defines a list of variable names which are local to the subroutine or function.   
These variables will retain their value between calls to the subroutine or 
function (unlike variables created using the LOCAL command).    
This command uses exactly the same syntax as DIM.  The only difference is 
that the length of the variable name created by STATIC and the length of the 
subroutine or function name added together cannot exceed 32 characters. 
Static variables can be initialised to a value.  This initialisation will take 
effect only on the first call to the subroutine (not on subsequent calls).   

STEP 
STEP 

Part of the  FOR x=a  TO b STEP c : NEXT  construction 
See FOR in command section 
See NEXT in command section 

SUB 
SUB xxx (arg1 [,arg2, …]) 

Defines a callable subroutine.  This is the same as adding a new command to 
MMBasic while it is running your program. 

http://geoffg.net/Downloads/Maximite/Programming_with_the_Colour_Maximite_2.pdf


Page 173             Armmite F4 User Manual Page 173 

   <statements> 
   <statements> 
END SUB 

'xxx' is the subroutine name and it must meet the specifications for naming a 
variable.   
'arg1', 'arg2', etc are the arguments or parameters to the subroutine.  An array 
is specified by using empty brackets.  ie,  arg3().  The type of the argument 
can be specified by using a type suffix (ie, arg1$) or by specifying the type 
using AS <type> (ie, arg1 AS STRING). 
Every definition must have one END SUB statement.  When this is reached 
the program will return to the next statement after the call to the subroutine.  
The command EXIT SUB can be used for an early exit. 
You use the subroutine by using its name and arguments in a program just as 
you would a normal command.  For example:   MySub a1, a2 
When the subroutine is called each argument in the caller is matched to the 
argument in the subroutine definition.  These arguments are available only 
inside the subroutine.  Subroutines can be called with a variable number of 
arguments.  Any omitted arguments in the subroutine's list will be set to zero 
or a null string.   
Arguments in the caller's list that are a variable (ie, not an expression or 
constant) will be passed by reference to the subroutine.  This means that any 
changes to the corresponding argument in the subroutine will also be copied 
to the caller's variable and therefore may be accessed after the subroutine has 
ended.  Arrays are passed by specifying the array name with empty brackets 
(eg, arg()) and are always passed by reference.  Brackets around the argument 
list in both the caller and the definition are optional. 

SYNC 
SYNC [period] [,units] 

The SYNC command with parameters sets up a fast timer and stores the 
period. The SYNC command without parameters waits for the timer to reach 
the period specified and then resets the timer and returns. As this all happens 
in the firmware the timing period is extremely accurate. 
Valid units are: 
If parameter is omitted: the period is expressed in raw clock counts 
1/84,000,000 seconds 
U or u: the period is expressed in microseconds 
M or m: the period is expressed in milliseconds 
S or s: the period is expressed in seconds 
 
In all cases the maximum period allowed is just over 51 seconds but, of 
course, for longer periods there are lots of other ways of doing this. The 
command is specifically targeted at short periods. 
This code below will toggle a pin at 100 uSec invervals. 
SYNC 100,u 
DO 
  SYNC 
  pin(PC2)=1 
  SYNC 
  pin(PC2)=0 
LOOP 

TEMPR START 
TEMPR START pin [, 
precision] 

This command can be used to start a conversion running on a DS18B20 
temperature sensor connected to 'pin'. 
Normally the TEMPR() function alone is sufficient to make a temperature 
measurement so usage of this command is optional. 
This command will start the measurement on the temperature sensor.  The 
program can then attend to other duties while the measurement is running and 
later use the TEMPR() function to get the reading.  If the TEMPR() function 
is used before the conversion time has completed the function will wait for 
the remaining conversion time before returning the value. 



Page 174             Armmite F4 User Manual Page 174 

Any number of these conversions (on different pins) can be started and be 
running simultaneously. 
'precision' is the resolution of the measurement and is optional.  It is a number 
between 0 and 3 meaning: 

0   =   0.5ºC resolution, 100 ms conversion time. 
1   =   0.25ºC resolution, 200 ms conversion time (this is the default). 
2   =   0.125ºC resolution, 400 ms conversion time. 

        3   =   0.0625ºC resolution, 800 ms conversion time. 

TEXT 
TEXT  x,  y,  string$  
[,alignment$]  [, font]  [, scale]  
[, c]  [, bc] 

Displays a string on the LCD display starting at 'x' and 'y'.  
‘string$’ is the string to be displayed.  Numeric data should be converted to a 
string and formatted using the Str$() function. 
' alignment$' is a string expression or string variable consisting of 0, 1 or 2 
letters where the first letter is the horizontal alignment around 'x' and can be 
L, C or R for LEFT, CENTER, RIGHT and the second letter is the vertical 
alignment around 'y' and can be T, M or B for TOP, MIDDLE, BOTTOM.  
The default alignment is left/top. 
A third letter can be used in the alignment string to indicate the rotation of the 
text.  This can be 'N' for normal orientation, 'V' for vertical text with each 
character under the previous running from top to bottom, 'I' the text will be 
inverted (ie, upside down), 'U' the text will be rotated counter clockwise by 
90º and 'D' the text will be rotated clockwise by 90º 
'font' and 'scale' are optional and default to that set by the FONT command.   
'c' is the drawing colour and 'bc' is the background colour.  They are optional 
and default to the current foreground and background colours. 
See the chapter "Basic Drawing Commands" for a definition of the colours 
and graphics coordinates. 

TIME$ 
TIME$ = "HH:MM:SS" 
or 
TIME$ = "HH:MM" 
or 
TIME$ = "HH" 

Sets the time of the internal clock.  MM and SS are optional and will default 
to zero if not specified.  For example TIME$ = "14:30" will set the clock to 
14:30 with zero seconds. 
The time is set to "00:00:00" on first power up however the time will be 
remembered and kept updated as long as the battery is installed and can 
maintain a voltage of over 2.5V.  Battery life should be 3 to 4 years even if 
the computer is powered off. 

TIME$ = ±sec Adds or subtracts 'sec' seconds from the current time being maintained by 
MMBasic.  This makes it easier to fine tune the current time. 

TIMER 
TIMER = msec 

Resets the timer to a number of milliseconds.  Normally this is just used to 
reset the timer to zero but you can set it to any positive integer. 
See the TIMER function for more details. 

TO 
TO 

Part of the  FOR x=a  TO b STEP c : NEXT  construction 
See FOR in command section 
See NEXT in command section 

TRACE 
TRACE ON 
or 
TRACE OFF 
or 
TRACE LIST nn 

TRACE ON/OFF will turn on/off the trace facility. This facility will print the 
number of each line (counting from the beginning of the program) in square 
brackets as the program is executed.  This is useful in debugging programs.  
TRACE LIST will list the last 'nn' lines executed in the format described 
above.  MMBasic is always logging the lines executed so this facility is 
always available (ie, it does not have to be turned on). 

TRIANGLE Draws a triangle on the LCD display with the corners at X1, Y1 and X2, Y2 



Page 175             Armmite F4 User Manual Page 175 

TRIANGLE X1, Y1, X2, Y2, 
X3, Y3 [, C [, FILL]] 

and X3, Y3.  'C' is the colour of the triangle and defaults to the current 
foreground colour.  'FILL' is the fill colour and defaults to no fill (it can also 
be set to -1 for no fill).  
All parameters can be expressed as arrays and the software will plot the 
number of triangles as determined by the dimensions of the smallest array. 
'x1', 'y1', 'x2', 'y2', 'x3',and 'y3' must all be arrays or all be single variables 
/constants otherwise an error will be generated 'c'  and 'fill' can be either 
arrays or single variables/constants.  

VAR 
VAR SAVE var [, var]…  
or 
VAR RESTORE  
or 
VAR CLEAR 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
VAR FSAVE 
 
VAR FRESTORE 

VAR SAVE will save one or more variables into battery backed-up ram. 
They can be restored later (normally after a power interruption).   
'var' can be any number of numeric or string variables and/or arrays.  Arrays 
are specified by using empty brackets.  For example: var() 
VAR RESTORE will retrieve the previously saved variables and insert them 
(and their values) into the variable table.   
The VAR SAVE command can be used repeatedly.  Variables that had been 
previously saved will be updated with their new value and any new variables 
(not previously saved) will be added to the saved list for later restoration. 
VAR CLEAR will erase all saved variables.   Also, the saved variables will 
be automatically cleared by the NEW command or when a new program is 
loaded via AUTOSAVE, XMODEM, etc. 
This command is normally used to save calibration data, options, and other 
data which needs to be retained across a power interruption.  Normally the 
VAR RESTORE command is placed at the start of the program so that 
previously saved variables are restored and immediately available to the 
program when it starts. 
Notes: 
 The storage space available to this command is 4KB.  The memory used 

is battery backed RAM which operates at high speed and can be written 
to an unlimited number of times without restriction (unlike the 
Micromite). 

 Using VAR RESTORE without a previous save will have no effect and 
will not generate an error. 

 If, when using RESTORE, a variable with the same name already exists 
its value will be overwritten. 

 Saved arrays must be declared (using DIM) before they can be restored. 
Be aware that string arrays can rapidly use up all the memory allocated to this 
command.  The LENGTH qualifier can be used when a string array is 
declared to reduce the size of the array (see the DIM command).  This is not 
needed for ordinary string variables. 
 
Copies the battery backed-up ram variables to the W25Q16 flash so it can be 
recovered if battery backup is lost or not available. 
Copies data saved in the W25Q16 flash back to the battery backed-up ram 
‘var’ 4K block. 

WATCHDOG 
WATCHDOG timeout 
or 
WATCHDOG OFF 

Starts the watchdog timer which will automatically restart the processor when 
it has timed out.  This can be used to recover from some event that disabled 
the running program (such as an endless loop or a programming or other error 
that halts a running program).  This can be important in an unattended control 
situation. 
'timeout' is the time in milliseconds (ms) before a restart is forced.  This 
command should be placed in strategic locations in the running BASIC 
program to constantly reset the watchdog timer and therefore prevent it from 
counting down to zero. 



Page 176             Armmite F4 User Manual Page 176 

If the timer count does reach zero (perhaps because the BASIC program has 
stopped running) the Maximite will be restarted and the automatic variable 
MM.WATCHDOG will be set to true (ie, 1) indicating that an error occurred.  
On a normal startup MM.WATCHDOG will be set to false (ie, 0). 
WATCHDOG OFF will disable the watchdog timer (this is the default on a 
reset or power up).  The timer is also turned off when the break character 
(normally CTRL-C) is used on the console to interrupt a running program. 

WS2812 
WS2812 type, pin, nbr, 
value%[()] 

Now BITBANG WS2812. 
This form is accepted but saved as the new format of the command. 

XMODEM 
XMODEM SEND 
or 
XMODEM RECEIVE 
or 
XMODEM CRUNCH 
 
 
 
 
 
 
XMODEM SEND file$ 
or 
XMODEM RECEIVE file$ 
 

Transfers a BASIC program to or from a remote computer using the 
XModem protocol.  The transfer is done over the serial console connection. 
XMODEM SEND will send the current program held in the Armmite's 
program memory to the remote device.  XMODEM RECEIVE will accept a 
program sent by the remote device and save it into the Micromite's program 
memory overwriting the program currently held there.  Note that the data is 
buffered in RAM which limits the maximum program size. 
The CRUNCH option works like RECEIVE but it instructs MMBasic to 
remove all comments, blank lines and unnecessary spaces from the program 
before saving. This can be used on large programs to allow them to fit into 
limited memory. 
SEND, RECEIVE and CRUNCH can be abbreviated to S, R and C. 
You can also specify 'file$' which will transfer the data to/from a file on the 
SD card.  If the file already exists it will be overwritten when receiving a file. 
The XModem protocol requires a cooperating software program running on 
the remote computer and connected to its serial port.  It has been tested on 
Tera Term running on Windows and it is recommended that this be used.  
After running the XMODEM command in MMBasic select: 
       File -> Transfer -> XMODEM -> Receive/Send 
 from the Tera Term menu to start the transfer. 
The transfer can take up to 15 seconds to start and if the XMODEM 
command fails to establish communications it will return to the MMBasic 
prompt after 60 seconds and leave the program memory untouched. 
Download Tera Term from http://ttssh2.sourceforge.jp/ 

  

  

  

  

  

http://ttssh2.sourceforge.jp/


Page 177             Armmite F4 User Manual Page 177 

Functions 
Detailed Listing 
Note that the functions related to communications functions (I2C, 1-Wire, and SPI) are not listed here but are 
described in the appendices at the end of this document. 
Square brackets indicate that the parameter or characters are optional. 

AND  

AS  

ABS 
ABS( number ) 

Returns the absolute value of the argument 'number' (ie, any negative sign is 
removed and the positive number is returned). 

ACOS 
ACOS (number ) 

Returns the inverse cosine of the argument 'number' in radians. 



Page 178             Armmite F4 User Manual Page 178 

ASC 
ASC( string$ ) 

Returns the ASCII code for the first letter in the argument ‘string$’. 

ASIN 
ASIN( number ) 

Returns the inverse sine value of the argument 'number' in radians. 

ATAN2 
ATAN2( y, x ) 

Returns the arc tangent of the two numbers x and y as an angle expressed in 
radians.  
It is similar to calculating the arc tangent of y / x, except that the signs of 
both arguments are used to determine the quadrant of the result. 

ATAN 
ATN( number ) 

Returns the arctangent of the argument 'number' in radians. 

BAUDRATE 
BAUDRATE( comm  [, 
timeout] ) 

Returns the baudrate of any data received on the serial communications port 
'comm').  
This will sample the port over the period of 'timeout' seconds.  'timeout' will 
default to one second if not specified.  
Returns zero if no activity on the port within the timeout period. 

BIN$ 
BIN$( number [, chars]) 

Returns a string giving the binary (base 2) value for the 'number'. 
'chars' is optional and specifies the number of characters in the string with 
zero as the leading padding character(s). 

BIN2STR$ 
BIN2STR$(type, value [,BIG]) 

Returns a string containing the binary representation of 'value'.  
'type' can be: 
  INT64 signed 64-bit integer converted to an 8 byte string  
  UINT64 unsigned 64-bit integer converted to an 8 byte string 
  INT32   signed 32-bit integer converted to a 4 byte string 
  UINT32   unsigned 32-bit integer converted to a 4 byte string  
  INT16   signed 16-bit integer converted to a 2 byte string 
  UINT16   unsigned 16-bit integer converted to a 2 byte string  
  INT8   signed 8-bit integer converted to a 1 byte string 
  UINT8   unsigned 8-bit integer converted to a 1 byte string  
  SINGLE   single precision floating point number converted to a 4 byte string 
  DOUBLE double precision floating point number converted to a 8 byte string 
By default the string contains the number in little-endian format (ie, the least 
significant byte is the first one in the string).  Setting the third parameter to 
‘BIG’ will return the string in big-endian format (ie, the most significant 
byte is the first one in the string)  In the case of the integer conversions, an 
error will be generated if the  ‘value’ cannot fit into the ‘type’ (eg, an 
attempt to store the value 400 in a INT8). 
This function makes it easy to prepare data for efficient binary file I/O or for 
preparing numbers for output to sensors and saving to flash memory.  
See also the function STR2BIN 

BOUND 
BOUND(array() [,dimension] 

This returns the upper limit of the array for the dimension requested.  
The dimension defaults to one if not specified. Specifying a dimension value 
of 0 will return the current value of OPTION BASE.  
Unused dimensions will return a value of zero.  
For example: 
DIM myarray(44,45)  
BOUND(myarray(),2) will return 45 

CALL 
CALL(userfunname$, 
[userfunparameters,…..] 

This is an efficient way of programmatically calling user defined functions.  
(See also the CALL command).  In many cases it can be used to eliminate 
complex SELECT and IF THEN ELSEIF ENDIF clauses and is processed           
in a much more efficient manner. ‘userfunname$ ’ can be any string or 
variable or function that resolves to the name of a normal user function (not 
an in-built command). ‘userfunparameters ’ are the same parameters that 
would be used to call the function directly.     
A typical use for this command could be writing any sort of emulator where 
one of a large number of functions should be called depending on some 
variable. It also provides a method of passing a function name to another 
subroutine or function as a variable.    



Page 179             Armmite F4 User Manual Page 179 

  

  

DATETIME$ 
DATETIME$(n) 

Returns the date and time corresponding to the epoch number n (number of 
seconds that have elapsed since midnight GMT on January 1, 1970). The 
format of the returned string is “dd-mm-yyyy hh:mm:ss”. Use the text NOW 
to get the current datetime string, i.e. ? DATETIME$(NOW) 

DAY$ 
DAY$(date$) 

Returns the day of the week for a given date as a string “Monday”, 
“Tuesday” etc. The format for date$ can be “dd-mm-yyyy”, “dd-mm-yy” or 
“yyyy-mm-dd”. Use NOW to get the day for the current date, e.g. ? 
DAY$(NOW) 

DEG 
DEG( radians ) 

Converts 'radians' to degrees. 

DIR$ 
DIR$( fspec, type ) 
or 
DIR$( fspec ) 
or 
DIR$(  ) 

Will search an SD card for files and return the names of entries found. 
'fspec' is a file specification using wildcards the same as used by the FILES 
command.  Eg, "*.*" will return all entries, "*.TXT" will return text files. 
'type' is the type of entry to return and can be one of: 

ALL Search for both files and directories 
DIR Search for directories only 
FILE Search for files only (the default if 'type' is not specified) 

The function will return the first entry found.  To retrieve subsequent entries 
use the function with no arguments.  ie,  DIR$( ).  The return of an empty 
string indicates that there are no more entries to retrieve. 
This example will print all the files in a directory: 

f$ = DIR$("*.*", FILE) 
DO WHILE f$ <> "" 
  PRINT f$ 
  f$ = DIR$() 
LOOP 

You must change to the required directory before invoking this command. 

DISTANCE 
DISTANCE( trigger, echo ) 
or 
DISTANCE( trig-echo ) 

Measure the distance to a target using the HC-SR04 ultrasonic distance 
sensor. 
Four pin sensors have separate trigger and echo connections.  'trigger' is the 
I/O pin connected to the "trig" input of the sensor and 'echo' is the pin 
connected to the "echo" output of the sensor.  
Three pin sensors have a combined trigger and echo connection and in that 
case you only need to specify one I/O pin to interface to the sensor. 
Note that any I/O pins used with the HC-SR04 should be 5V capable as the 
HC-SR04 is a 5V device.  The I/O pins are automatically configured by this 
function and multiple sensors can be used on different I/O pins. 
The value returned is the distance in centimetres to the target or -1 if no 
target was detected or -2 if there was an error (ie, sensor not connected). 



Page 180             Armmite F4 User Manual Page 180 

EOF 
EOF( [#]nbr ) 

Will return true if the file previously opened on the SD card for INPUT with 
the file number ‘#fnbr’ is positioned at the end of the file.   
For a serial communications port this function will return true if there are no 
characters waiting in the receive buffer.   #0 can be used which refers to the 
console's input buffer. 
The # is optional.  Also see the OPEN, INPUT and LINE INPUT commands 
and the INPUT$ function. 

EPOCH 
EPOCH(DATETIME$) 

Returns the epoch number (number of seconds that have elapsed since 
midnight GMT on January 1, 1970) for the supplied DATETIME$ string. 
The format for DATETIME$ is “dd-mm-yyyy hh:mm:ss”. The format for 
year can be “dd-mm-yyyy”, “dd-mm-yy” or “yyyy-mm-dd”. Use NOW to 
get the epoch number for the current date and time, i.e. ? EPOCH(NOW) 

EVAL 
EVAL( string$ ) 

Will evaluate 'string$' as if it is a BASIC expression and return the result. 
'string$' can be a constant, a variable or a string expression. The expression 
can use any operators, functions, variables, subroutines, etc that are known at 
the time of execution.  The returned value will be an integer, float or string 
depending on the result of the evaluation.  
For example:  S$ = "COS(RAD(30)) * 100" : PRINT EVAL(S$) 
Will display:  86.6025 

EXP 
EXP( number ) 

Returns the exponential value of 'number', ie, ex where x is 'number'. 

  

FIELD$ 
FIELD$( string1, nbr, string2 [, 
string3] ) 

Returns a particular field in a string with the fields separated by delimiters. 
'nbr' is the field to return (the first is nbr 1).  'string1' is the string to search 
and 'string2' is a string holding the delimiters (more than one can be used). 
'string3' is optional and if specified will include characters that are used to 
quote text in 'string1' (ie, quoted text will not be searched for a delimiter). 
For example: 

s1 = "foo, boo, zoo, doo" 
r$ = FIELD$(s1, 2, ",") 

will result in r$ = "boo".  While: 
s1 = "foo, 'boo, zoo', doo" 
r$ = FIELD$(s1, 2, ",", "'") 

will result in r$ = "'boo, zoo'". 

FIX 
FIX( number ) 

Truncate a number to a whole number by eliminating the decimal point and 
all characters to the right of the decimal point.  
For example 9.89 will return 9 and -2.11 will return -2.  
The major difference between FIX and INT is that FIX provides a true 
integer function (ie, does not return the next lower number for negative 
numbers as INT() does).  This behaviour is for Microsoft compatibility.  
See also CINT() . 

FORMAT$ 
FORMAT$( nbr [, fmt$] ) 

Will return a string representing ‘nbr’ formatted according to the                      
specifications in the string ‘fmt$’ 
The format specification starts with a % character and ends with a letter. 
Anything outside of this construct is copied to the output as is.   
The structure of a format specification is:   
        % [flags] [width] [.precision] type   
 
Where ‘flags’ can be:   
         -           Left justify the value within a given field width   
        0           Use 0 for the pad character instead of space   
        +           Forces the + sign to be shown for positive numbers  
        space    Causes a positive value to display a space for the sign.                   
                     Negative values still show the – sign   
‘width’ is the minimum number of characters to output, less than this the              



Page 181             Armmite F4 User Manual Page 181 

GPS(ALTITUDE) 
 
GPS(DATE) 
 
GPS(DOP) 
 
GPS(FIX) 
 
GPS(GEOID) 
 
GPS(LATITUDE) 
 
GPS LONGITUDE) 
 
GPS(SATELLITES) 
 
GPS(SPEED) 
 
GPS(TIME) 
 
GPS(TRACK) 
 
GPS(VALID) 
 

returns current altitude if sentence GGA enabled                                                      
 
returns the normal date string corrected for local time e.g. “12-01-2017” 
 
returns DOP (dilution of precision) value if sentence GGA enabled 
 
returns  0=no fix, 1=fix, etc. if sentence GGA enabled 
 
Returns the geoid-ellipsoid separation. if sentence GGA enabled 
 
returns the latitude in degrees as a floating point number,  values are –ve for 
South of equator 
returns the longitude in degrees as a floating point number,  values are –ve 
for West of the meridian 
returns number of satellites in view if sentence GGA enabled 
 
returns the ground speed in knots as a floating point number 
 
returns the normal time string corrected for local time e.g. “12:09:33” 
 
returns the track over the ground (degrees true) as a floating point number 
 
returns: 0=invalid data, 1=valid data. ALWAYS CHECK THIS VALUE TO 
ENSURE DATA IS VALID BEFORE USING OTHER GPS() FUNCTION 
CALLS 
 
GPS will accept $GNGGA and $GNRMC as well as $GPGGA and 
$GPRMC strings. 
 



Page 182             Armmite F4 User Manual Page 182 

HEX$ 
HEX$( number [, chars]) 

Returns a string giving the hexadecimal (base 16) value for the 'number'. 
'chars' is optional and specifies the number of characters in the string with 
zero as the leading padding character(s). 

INKEY$ 
INKEY$ 

Checks the console input buffer and, if there is one or more characters 
waiting in the queue, will remove the first character and return it as a single 
character in a string.  If this is a carriage return, it is likely that there will be 
a line feed character following as often the enter key will produce a CR/LF 
pair. 
If the input buffer is empty this function will immediately return with an 
empty string (ie, ""). 

INPUT$ 
INPUT$(nbr,  [#]fnbr) 

Will return a string composed of ‘nbr’ characters read from a file on the SD 
card previously opened for INPUT with the file number ‘#fnbr’.  This 
function will read all characters including carriage return and new line 
without translation.   
Will return a string composed of ‘nbr’ characters read from a serial 
communications port opened as 'fnbr'.  This function will return as many 
characters as are waiting in the receive buffer up to ‘nbr’.  If there are no 
characters waiting it will immediately return with an empty string. 
#0 can be used which refers to the console's input buffer. 
The # is optional.  Also see the OPEN command. 

INSTR 
INSTR( [start-position,] string-
searched$, string-pattern$ ) 

Returns the position at which 'string-pattern$' occurs in 'string-searched$', 
beginning at 'start-position'.  
Both the position returned and 'start-position' use 1 for the first character, 2 
for the second, etc. The function returns zero if  'string-pattern$' is not found. 

INT 
INT( number ) 

Truncate an expression to the next whole number less than or equal to the 
argument. For example 9.89 will return 9 and -2.11 will return -3. 
This behaviour is for Microsoft compatibility, the FIX() function provides a 
true integer function. 
See also CINT() . 

JSON$ 
JSON$(array%(), string$) 

Returns a string representing a specific item out of the JSON input   
stored in the longstring array%()   
  e.g.   
  JSON$(a%(), “name”)   
  JSON$(a%(), “coord.lat”)   
  JSON$(a%(), “weather[0].description”)   
  JSON$(a%(),”list[4].weather[0].description   
  Examples taken from api.openweathermap.org  
  
Many JSON data sets are quite large and may be too big to parse with the 
memory available to the Armmite F4. Where the memory is exhausted the 
effect on the Armmite F4 may be unpredicaable, however if there is an issue 
the firmware will attempt to force a software reset and print a relevant 
error. 
If the data set you are working with is too large and can’t be made smaller 
another approach will be required. 
 

LCASE$ 
LCASE$( string$ ) 

Returns ‘string$’ converted to lowercase characters. 

LCOMPARE 
LCOMPARE(array1%(), 
array2%()) 

Compare the contents of two long string variables array1%() and array2%(). 
The returned is an integer and will be -1 if array1%() is less than array2%(). 
It will be zero if they are equal in length and content and +1 if array1%() is 
greater than array2%(). The comparison uses the ASCII character set and is 
case sensitive. 

LEFT$ 
LEFT$( string$, nbr ) 

Returns a substring of ‘string$’ with ‘nbr' of characters from the left 
(beginning) of the string. 

https://www.thebackshed.com/forum/ViewTopic.php?FID=16&TID=15405


Page 183             Armmite F4 User Manual Page 183 

  

PIN( function ) Returns the value of a special function.  'function' is a string (ie, it can be a 
string variable or string constant).  For example PRINT PIN(BAT). 
It can be one of: 

BAT The voltage of the backup battery. 
TEMP The temperature of the STM32 processor's core. 
SREF The stored calibrated value of the internal reference voltage 

measured with a supply of exactly 3.3V. This is 
programmed into the chip during production. 

IREF The measured value of the internal reference voltage.  The 
actual value of VREF+ can be calculated as: 
        3.3 * PIN(SREF) / PIN(IREF)  
and this can be used to set OPTION VCC. Once Option 
VCC is set the the above value, IREF will now return a 
value very close to SREF, so issuing another OPTION 
VCC command will set it to an incorrect value. 

 

On the Armmite F4 the options are stored in RTC battery backed registers so 
cannot be accessed using the other PEEK commands. See CFunction.h file to 
see locations of various Options withing the 80 Bytes. 
 

PI 
PI 

Returns the value of pi. 

PIN 
PIN( pin ) 

Returns the value on the external I/O ‘pin’.  Zero means digital low, 1 means 
digital high and for analog inputs it will return the measured voltage as a 
floating point number. 
Frequency inputs will return the frequency in Hz.  A period input will return 
the period in milliseconds while a count input will return the count since 
reset (counting is done on the positive rising edge).  The count input can be 
reset to zero by resetting the pin to counting input (even if it is already so 
configured). 
This function will also return the state of a pin configured as an output. 
Also see the SETPIN and PIN() = commands. 



Page 184             Armmite F4 User Manual Page 184 

PIXEL 
PIXEL( x, y ) 

Returns the colour of a pixel on the LCD display.  'x' is the horizontal 
coordinate and 'y' is the vertical coordinate of the pixel.  See the chapter 
Using an LCD Panel for a definition of the colours and graphics coordinates. 

PORT 
PORT(start, nbr [,start, nbr]…) 

Returns the value of a number of I/O pins in one operation. 
'start' is an I/O pin number and its value will be returned as bit 0.  'start'+1 
will be returned as bit 1, 'start'+2 will be returned as bit 2, and so on for 'nbr' 
number of bits. I/O pins used must be numbered consecutively and any I/O 
pin that is invalid or not configured as an input will cause an error.  The 
start/nbr pair can be repeated up to 25 times if additional groups of input 
pins need to be added. 
This function will also return the state of a pin configured as an output.  It 
can be used to conveniently communicate with parallel devices like memory 
chips.  Any number of I/O pins (and therefore bits) can be used from 1 to the 
number of I/O pins on the chip.  
See the PORT command to simultaneously output to a number of pins. 

POS 
POS 

See Obsolete Commands and Functions section. 
For the console returns the position of the cursor on the current line. 
Use MM.INFO$( 
 

PULSIN 
PULSIN( pin, polarity ) 
or 
PULSIN( pin, polarity, t1 ) 
or 
PULSIN( pin, polarity, t1, t2 ) 

Measures the width of an input pulse from 1µs to 1 second with 0.1µs 
resolution. 
'pin' is the I/O pin to use for the measurement, it must be previously 
configured as a digital input.  'polarity' is the type of pulse to measure, if 
zero the function will return the width of the next negative pulse, if non zero 
it will measure the next positive pulse. 
't1' is the timeout applied while waiting for the pulse to arrive, 't2' is the timeout 
used while measuring the pulse.  Both are in microseconds (µs) and are optional.  
If 't2' is omitted the value of 't1' will be used for both timeouts.  If both 't1' and 
't2' are omitted then the timeouts will be set at 100000 (ie, 100ms). 
This function returns the width of the pulse in microseconds (µs) or -1 if a 
timeout has occurred.  The measurement is accurate to ±1 µs. 
Note that this function will cause the running program to pause while the 
measurement is made and interrupts will be ignored during this period. 

RAD 
RAD( degrees ) 

Converts 'degrees' to radians.  

RGB 
RGB(red, green, blue [, trans]) 
or 
RGB(shortcut [, trans]) 

Generates an RGB true colour value.  'red', 'blue' and 'green' represent the 
intensity of each colour.  A value of zero represents black and 255 represents 
full intensity. 
'shortcut' allows common colours to be specified by naming them.  The 
colours that can be named are white, black, blue, green, cyan, red, magenta, 
yellow, brown and gray.  For example, RGB(red) or RGB(cyan). 
'trans' is the level of transparency for colour depths 4 and 12.  It is optional 
and defaults to 15 if not specified. 

RIGHT$ 
RIGHT$( string$, number-of-
chars ) 

Returns a substring of ‘string$’ with ‘number-of-chars’ from the right (end) 
of the string.  

RND 
RND( number ) 
or 
RND 

Returns a pseudo-random number in the range of 0 to 0.999999.  The 
'number' value is ignored if supplied.  
The Armmite F4 uses the hardware random number generator in the STM32 
series of chips to deliver true random numbers.  This means that the 
RANDOMIZE command is no longer needed and is not supported. 

SGN 
SGN( number ) 

Returns the sign of the argument 'number', +1 for positive numbers, 0 for 0, 
and -1 for negative numbers. 

SIN 
SIN( number ) 

Returns the sine of the argument 'number' in radians. 



Page 185             Armmite F4 User Manual Page 185 

  



Page 186             Armmite F4 User Manual Page 186 

STR2BIN 
STR2BIN(type, string$ [,BIG]) 

Returns a number equal to the binary representation in ‘string$’.  
‘type’ can be: 
INT64  converts 8 byte string representing a signed 64-bit integer to an integer 
UINT64  converts 8 byte string representing an unsigned 64-bit integer to an integer 
INT32  converts 4 byte string representing a signed 32-bit integer to an integer 
UINT32  converts 4 byte string representing an unsigned 32-bit integer to an integer 
INT16  converts 2 byte string representing a signed 16-bit integer to an integer 
UINT16  converts 2 byte string representing an unsigned 16-bit integer to an integer 
INT8  converts 1 byte string representing a signed 8-bit integer to an integer 
UINT8  converts 1 byte string representing an unsigned 8-bit integer to an integer 
SINGLE  converts 4 byte string representing single precision float to a float 
DOUBLE   converts 8 byte string representing single precision float to a float 
By default the string must contain the number in little-endian format (ie, the 
least significant byte is the first one in the string).  Setting the third 
parameter to ‘BIG’ will interpret the string in big-endian format (ie, the most 
significant byte is the first one in the string). 
This function makes it easy to read data from binary data files, interpret 
numbers from sensors or efficiently read binary data from flash memory 
chips.  
An error will be generated if the string is the incorrect length for the 
conversion requested 
See also the function BIN2STR$ 

STR$ 
STR$( number ) 
or  
STR$( number, m ) 
or 
STR$( number, m, n ) 
or 
STR$( number, m, n, c$ ) 

Returns a formatted string in decimal (base 10) representation of  'number'. 
If 'm' is specified sufficient spaces will be added to the start of the number to 
ensure that the number of characters before the decimal point (including the 
negative or positive sign)  will be at least 'm' characters.  If 'm' is zero or the 
number has more than 'm' significant digits no padding spaces will be added. 
If 'm' is negative, positive numbers will be prefixed with the plus symbol and 
negative numbers with the negative symbol.  If 'm' is positive then only the 
negative symbol will be used. 
'n' is the number of digits required to follow the decimal place.  If it is zero 
the string will be returned without the decimal point.  If it is negative the 
output will always use the exponential format with 'n' digits resolution. If 'n' 
is not specified the number of decimal places and output format will vary 
automatically according to the number. 
'c$' is a string and if specified the first character of this string will be used as 
the padding character instead of a space (see the 'm' argument). 
Examples: 
 STR$(123.456) will return "123.456" 
 STR$(-123.456) will return "-123.456" 
 STR$(123.456, 1) will return "123.456" 
 STR$(123.456, -1) will return "+123.456" 
 STR$(123.456,  6) will return "   123.456" 
 STR$(123.456,  -6) will return "  +123.456" 
 STR$(-123.456,  6) will return "  -123.456" 
 STR$(-123.456,  6,  5) will return "  -123.45600" 
 STR$(-123.456,  6,  -5) will return "    -1.23456e+02" 
 STR$(53,  6) will return "    53" 
 STR$(53,  6,  2) will return "    53.00" 
 STR$(53,  6,  2, "*") will return "****53.00" 

STRING$ 
STRING$( nbr,  ascii ) 
or 
STRING$( nbr,  string$ ) 

Returns a string 'nbr' bytes long consisting of either the first character of 
string$ or the character representing the ASCII value 'ascii' which is a 
decimal number in the range of 32 to 126. 

TAB 
TAB( number ) 

Outputs spaces until the column indicated by 'number' has been reached on 
the console output. 

TAN 
TAN( number ) 

Returns the tangent of the argument 'number' in radians. 

TEMPR Return the temperature measured by a DS18B20 temperature sensor 



Page 187             Armmite F4 User Manual Page 187 

TOUCH(UP) Will return true if the screen is currently NOT being touched. 

TOUCH(LASTX) Will return the X coordinate of the last location that was touched. 

TOUCH(LASTY) Will return the Y coordinate of the last location that was touched. 

TOUCH(REF) Will return the reference number of the control that is currently being 
touched or zero if no control is being touched.   

TOUCH(LASTREF) Will return the reference number of the last control that was touched. 

TOUCH 
TOUCH(DOWN) 

Will return true if the screen is currently being touched. 

UCASE$ 
UCASE$( string$ ) 

Returns ‘string$’ converted to uppercase characters. 

VAL 
VAL( string$ ) 

Returns the numerical value of the ‘string$’.  If 'string$' is an invalid number 
the function will return zero. This function will recognise the &H prefix for 
a hexadecimal number, &O for octal and &B for binary. 



Page 188             Armmite F4 User Manual Page 188 

Obsolete Commands and Functions 
Detailed Listing 
These commands and functions are mostly included to assist in converting programs written for Microsoft 
BASIC.  For new programs the corresponding modern commands in MMBasic should be used. 

These commands may be removed in the future to recover memory for other features. 

  

IF condition THEN linenbr For Microsoft compatibility a GOTO is assumed if the THEN statement is 
followed by a number.  A label is invalid in this construct. 
New programs should use:  IF condition THEN GOTO linenbr | label 

ON nbr GOTO | GOSUB 
target[,target, target,...] 

ON either branches (GOTO) or calls a subroutine (GOSUB) based on the 
rounded value of 'nbr'; if it is 1, the first target is called, if 2, the second 
target is called, etc.  Target can be a line number or a label. 
New programs should use SELECT CASE. 

GOSUB 
GOSUB target  

Initiates a subroutine call to the target, which can be a line number or a label.  
The subroutine must end with RETURN. 
New programs should use defined subroutines (ie, SUB…END SUB). 

IRETURN 
IRETURN 

Returns from an interrupt when the interrupt destination was a line number 
or a label. 
New programs should use a user defined subroutine as an interrupt 
destination.  In that case END SUB or EXIT SUB will cause a return from 
the interrupt. 

POS 
POS 

For the console, returns the current cursor position in the line in characters. 

RETURN 
RETURN 

RETURN concludes a subroutine called by GOSUB and returns to the 
statement after the GOSUB. 



Page 189             Armmite F4 User Manual Page 189 

Change Log 
This table gives a summary of the main updates to this document for the various releases. 
 
Version Change Details 
5.07.00 
Draft 

Initial Draft for feedback 

5.07.00  
Draft 2 

Includes various corrections based on feedback. 
 

5.07.00 Beta12 
Draft 3 

Manual updated to include Beta12 software features and fixes. 
Includes many refinements/corrections based on feedback.  
Tables for STM32407VET6 MINI added. 
A reasonably complete manual. 

5.07.00 Beta14 
Draft 4 

This Change Log section added to track corrections so is easier to see what has 
changed. 
Manual should match Beta14 software. 
BLIT READ syntax corrected 
Humid syntax updated to match code, now allows for DHT11 and DHT22 Sensors 
Serial on the ARMMite does not support INV parameter. Manual updated to reflect 
this. Low Cost RS-232 Interface in Appendix A revised as INV not available. 
Various corrections/clarifications based on feedback. 
 

5.07.00 Beta15 
Draft 5 

Software enhancements 
Manual now matches Beta15 software 
Added new math command - MATH M_INVERSE array!(), inversearray!() 
Added new math function -   MATH(M_DETERMINANT array!()) 
Enhancement of the RESTORE and READ commands 
 
Documentation Corrections 
Commands added/corrected 
MATH FFT, MATH ADD, MATH INSERT, MATH SLICE, MATH Q_EULER 
MATH Q_VECTOR amended, SAVE filename added, LOAD FONT removed. 
Missing function MATH CORREL added. 
 
PDF now generated using NovaPDF and bookmarks now extend to three levels so 
commands and functions are expanded. 
Minor other corrections. 
Link to TBS post on ArmmiteF4 CSUBs  

5.07.02 Beta0 
Draft 0 

Documentation Corrections 
Appendix D Corrected the available SPI Open speeds. 
Missing PAGE command added. 
Missing KEYPAD command added. 
Option Serial Pullup corrected to show enabled as the default 
The order of some sections has changed to better match the order in the Picomite 
manauals. 
 
Changes due to Software enhancements 
Manual now matches 5.07.02 Beta0 software 
The following Commands and Functions are affected. 
 



Page 190             Armmite F4 User Manual Page 190 

Functions and Font Removed 
MATH(CHI  and MATH(CHI_P functions removed. 
FONT 5 in now a medium 16 x10 font in lieu of Large font 32 x 20 
The large 32 x 20 font can be loaded into Libray if required. 
 
These new or changed commands documented. 
BACKLIGHT percentage [,S|,R] command now has optional extra parameter to 
permanrntly change the default brightness. 
LIBRARY  SAVE 
LIBRARY DELETE 
LIBRARY LIST 
LIBRARY LIST ALL 
LIBRARY CHECK   (Unique to Armmite F4) 
OPTION FLASH_CS [32|77|0] added to define the Windbond CS pin. 
MEMORY command enhanced to show more detail. 
 
OPTION SAVE allows use of embedded OPTION commands which allows running 
without backup battery. 
 
MM.INFO is allowed and is alias for MM.INFO$ - now can return integer or string as 
required. 
MM.INFO$(LCDPANEL) 
MM.INFO(RESTART) 
MM.INFO(HEIGHT) 
MM.INFO(WIDTH) 
MM.INFO$(CONSOLE) 
MM.INFO(PINNO) 
 
VAR FSAVE 
VAR FRESTORE 
 
MATH (CRC8, CRC16,CRC32 .... ) function added  
BITBANG command added 
BITBANG BITSTREAM  added 
BITBANG WS2812 now controls single LED if required up to 256 
BITBANG WS2812 [O|B|S|W], pin, nbr, value%[()]  
BITBANG WS2812 W, pin, nbr, value%[()] now supports SK6812 RGBW Leds 
BITBANG HUMID for old HUMID command 
BITBANG LCD for old LCD command 
POKE DISPLAY cmd,data,data,.. 
POKE DISPLAY HRES,hres 
POKE DISPLAY VRES,vres 
 
EXECUTE command added 
CALL subname$ added 
? CALL functionname$ added 
 
SETTICK PAUSE ,target,[nbr]  Added  
SETTICK RESUME,target,[nbr]  Added  
GUI PAGE replaces PAGE 
 



Page 191             Armmite F4 User Manual Page 191 

LIST [filename ] option added  
LIST  ALL[filename ]option added 
 
RUN ShortCut * added  
RUN,parameter now set MM.CMDLINE$  
 
INTERRUPT [myint] added 
SETPIN pin, CIN [,option]  options 1-5 added 
MID$ command enhanced to allow variable length replacements. 
OPTION ESCAPE to allow escaping when entering special characters added. 
READ command enhanced - can now take arrays as a parameter. 
RESTORE command enhanced - can now take a variable as a parameter. 
READ SAVE and READ RESTORE added 
CFUNCTION and END CFUNCTION added. 
 
OPTION LCDPANEL supports additional displays. 
ILI9486_16 480*320 display 
SSD1963_5ER_16 East Rising 5" added 
ILI9488 480*320 
GC9A01 240*240 round IPS display 
ST7789 240*240 IPS display 
ILI9431_I inverse display 
ILI9481IPS 240*320 IPS display 
 

  
  
 
 



Page 192             Armmite F4 User Manual Page 192 

Appendix A – Serial Communications 
Serial Communications 
 
Four serial ports are available for asynchronous serial communications labelled COM1:, COM2:, COM3:, and 
COM4:  If the serial console is enabled then COM1:  is unavailable. 
After being opened the serial port will have an associated file number and you can use any commands that operate 
with a file number to read and write to/from it.  A serial port is also closed using the CLOSE command. 
The following is an example: 
OPEN "COM1:4800" AS #5 ‘ open the first serial port with a speed of 4800 baud 
PRINT #5, "Hello" ‘ send the string "Hello" out of the serial port 
dat$ = INPUT$(20, #5) ‘ get up to 20 characters from the serial port 
CLOSE #5 ‘ close the serial port 

The OPEN Command 
A serial port is opened using the command: 
OPEN comspec$ AS #fnbr 

 ‘fnbr’ is the file number to be used.  It must be in the range of 1 to 10.  The # is optional. 
‘comspec$’ is the communication specification and is a string (it can be a string variable) specifying the serial 
port to be opened and optional parameters.  The default is 9600 baud, 8 data bits, no parity and one stop bit. 
It has the form    "COMn: baud, buf, int, int-trigger, 7BIT, (ODD or EVEN), OC, S2"   
where: 

 ‘n’ is the serial port number for either COM1:, COM2:, COM3: or COM4:. 
 ‘baud’ is the baud rate.  This can be any value between 2400 (the minimum) and 1.8MHz.  Default is 

9600. 
 ‘buf’ is the receive buffer size in bytes (default size is 256).  The transmit buffer is fixed at 256 bytes. 
 ‘int’ is a user defined subroutine which will be called when the serial port has received some data.  The 

default is no interrupt. 
 ‘int-trigger’ sets the trigger condition for calling the interrupt subroutine.  It is an integer and the 

interrupt subroutine will be called when this number of characters has arrived in the receive queue. 
All parameters except the serial port name (COMn:) are optional.  If any one parameter is left out, then all the 
following parameters must also be left out and the defaults will be used.   
The following options can be added to the end of  'comspec$' 

 ‘OC’ will force the transmit pin to be open collector.  The default is normal (0 to 3.3V) output. 
 'S2' specifies that two stop bits will be sent following each character transmitted.  Default is one stop bit. 
 '7BIT' will specify that 7 bit transmit and receive is to be used.  Default is 8 bits. 
 ‘ODD’ will specify that an odd parity bit will be appended (8 bits will be transmitted if 7BIT is specified, 

otherwise 9) 
 ‘EVEN’ will specify that an even parity bit will be appended (8 bits will be transmitted if 7BIT is 

specified, otherwise 9) 

Input/Output Pin Allocation 
When a serial port is opened the pins used by the port will be automatically set to input or output as required 
and the SETPIN and PIN commands will be disabled for the pins.  When the port is closed (using the CLOSE 
command) all pins used by the serial port will be set to a not-configured state and the SETPIN command can 
then be used to reconfigure them. 
The connections for each COM port are shown in the I/O connector pinout diagrams in the beginning of this 
manual.  Note that Tx means an output from the Armmite and Rx means an input to the Armmite. 
The signal polarity is standard for devices running at TTL voltages (for RS232 voltages see below).  Idle is 
voltage high, the start bit is voltage low, data uses a high voltage for logic 1 and the stop bit is voltage high.  
These signal levels allow you to directly connect to devices like GPS modules (which generally use TTL 
voltage levels).   



Page 193             Armmite F4 User Manual Page 193 

When a serial port is opened MMBasic will enable an internal pullup resistor (to Vdd) on the Rx (receive data) 
pin.  This has a value of about 40K and its purpose is to prevent the input from floating if it is left unconnected.  
Normally this is fine but it can cause a problem if you have an external resistor in series with the Rx pin, in that 
case this resistor and the pullup resistor will form a voltage divider limiting how high or low the voltage on the 
Rx pin can swing and that in turn might mean that the input signal is not recognised.  The solution is to use the 
command SERIAL PULLUP DISABLE to disable it. 

Examples 
Opening a serial port using all the defaults: 
OPEN "COM2:" AS #2 
Opening a serial port specifying only the baud rate (4800 bits per second): 
OPEN "COM2:4800" AS #1 

Opening a serial port specifying the baud rate (9600 bits per second) and receive buffer size (1KB): 
OPEN "COM1:9600, 1024" AS #8 

The same as above but with two stop bits enabled: 
OPEN "COM1:9600, 1024, S2" AS #8 

An example specifying everything including an interrupt, an interrupt level and two stop bits: 
OPEN "COM1:19200, 1024, ComIntLabel, 256, S2" AS #5 

Reading and Writing 
Once a serial port has been opened you can use any command or function that uses a file number to read from 
and write to the port.  Data received by the serial port will be automatically buffered in memory by MMBasic 
until it is read by the program and the INPUT$() function is the most convenient way of doing that.  When 
using the INPUT$() function the number of characters specified will be the maximum number of characters 
returned but it could be less if there are less characters in the receive buffer.  In fact the INPUT$() function will 
immediately return an empty string if there are no characters available in the receive buffer.   
The LOC() function is also handy; it will return the number of characters waiting in the receive buffer (ie, the 
maximum number characters that can be retrieved by the INPUT$() function).  Note that if the receive buffer overflows 
with incoming data the serial port will automatically discard the oldest data to make room for the new data. 
The PRINT command is used for outputting to a serial port and any data to be sent will be held in a memory 
buffer while the serial port is sending it.  This means that MMBasic will continue with executing the commands 
after the PRINT command while the data is being transmitted.  The one exception is if the output buffer is full 
and in that case MMBasic will pause and wait until there is sufficient space before continuing.  The LOF() 
function will return the amount of space left in the transmit buffer and you can use this to avoid stalling the 
program while waiting for space in the buffer to become available. 
If you want to be sure that all the data has been sent (perhaps because you want to read the response from the 
remote device) you should wait until the LOF() function returns 256 (the transmit buffer size) indicating that 
there is nothing left to be sent.  
Serial ports can be closed with the CLOSE command.  This will wait for the transmit buffer to be emptied then 
free up the memory used by the buffers, cancel the interrupt (if set) and set all pins used by the port to the not 
configured state.  A serial port is also automatically closed when commands such as RUN and NEW are issued. 

Interrupts 
The interrupt subroutine (if specified) will operate the same as a general interrupt on an external I/O pin. 
When using interrupts you need to be aware that it will take some time for MMBasic to respond to the interrupt 
and more characters could have arrived in the meantime, especially at high baud rates.  For example, if you 
have specified the interrupt level as 250 characters and a buffer of 256 characters then quite easily the buffer 
will have overflowed by the time the interrupt subroutine can read the data.  In this case the buffer should be 
increased to 512 characters or more.  

Low Cost RS-232 Interface 
The RS-232 signalling system is used by modems, hardwired serial ports on a PC, test equipment, etc.  It is the 
same as the serial TTL system used on the Armmite F4 with two exceptions: 

 The voltage levels of RS-232 are +12V and -12V where TTL serial uses +3.3V and zero volts. 
 The signalling is inverted (the idle voltage is -12V, the start bit is +12V, etc). 

It is possible to purchase cheap RS-232 to TTL converters on the Internet but it would be handy if it was 
possible to directly interface to RS-232.  



Page 194             Armmite F4 User Manual Page 194 

The simple circuit described in the manuals for the Micromites cannot be used on the Armmite F4 as the INV 
feature is not supported on the ARM processor, however the following circuit from the link below should work 
with the Armmite as the signals are inverted using hardware. 
http://picprojects.org.uk/projects/simpleSIO/ssio.htm 
 

 

http://picprojects.org.uk/projects/simpleSIO/ssio.htm


Page 195             Armmite F4 User Manual Page 195 

Appendix B – I2C Communications 
I2C Communications 
 
The Armmite F4 implements three I2C channels, two on the rear I/O connector and the third dedicated to the 
front panel Wii connector. All operate in master mode (slave mode is not available).   
There are four commands that can be used: 

I2C OPEN speed, 
timeout 

Enables the I2C module in master mode.  The I2C command refers to channel 1 
while commands I2C2 and I2C3 refer to channels 2 and 3 using the same syntax. 
‘speed’ is the clock speed (in KHz) to use and must be one of 100 or 400. 
‘timeout’ is a value in milliseconds after which the master send and receive 
commands will be interrupted if they have not completed. The minimum value is 
100. A value of zero will disable the timeout (though this is not recommended). 

I2C WRITE addr, 
option, sendlen, 
senddata [,sendata 
....] 

Send data to the I2C slave device.  The I2C command refers to channel 1 while 
commands I2C2 refer to channels 2 using the same syntax. 
‘addr’ is the slave’s I2C address. 
‘option’ can be 0 for normal operation or 1 to keep control of the bus after the 
command (a stop condition will not be sent at the completion of the command) 

 ‘sendlen’ is the number of bytes to send. 
‘senddata’ is the data to be sent - this can be specified in various ways (all values 
sent will be between 0 and 255): 

 The data can be supplied as individual bytes on the command line. 
Example:  I2C WRITE &H6F, 0, 3, &H23, &H43, &H25 

 The data can be in a one dimensional array specified with empty brackets (ie, 
no dimensions).  ‘sendlen’ bytes of the array will be sent starting with the first 
element.  Example:  I2C WRITE &H6F, 0, 3, ARRAY() 

 The data can be a string variable (not a constant). 
Example:  I2C WRITE &H6F, 0, 3, STRING$ 

I2C READ addr, 
option, rcvlen, rcvbuf 

Get data from the I2C slave device.  The I2C command refers to channel 1 while 
commands I2C2 refer to channels 2 using the same syntax. 
‘addr’ is the slave’s I2C address. 
‘option’ can be 0 for normal operation or 1 to keep control of the bus after the 
command (a stop condition will not be sent at the completion of the command) 

 ‘rcvlen’ is the number of bytes to receive. 
‘rcvbuf’ is the variable or array used to save the received data - this can be: 

 A string variable.  Bytes will be stored as sequential characters in the string. 
 A one dimensional array of numbers specified with empty brackets.  Received 

bytes will be stored in sequential elements of the array starting with the first.  
Example:  I2C READ &H6F, 0, 3, ARRAY() 

 A normal numeric variable (in this case rcvlen must be 1).  

I2C CLOSE Disables the master I2C module and returns the I/O pins to a "not configured" state.  
They can then be configured using SETPIN.  This command will also send a stop 
if the bus is still held. 
The I2C command refers to channel 1 while commands I2C2 refer to channels 2 
using the same syntax. 



Page 196             Armmite F4 User Manual Page 196 

Following an I2C write or read command the automatic variable MM.I2C will be set to indicate the result of the 
operation as follows: 

0 = The command completed without error. 
1 = Received a NACK response 
2 = Command timed out 

7-Bit Addressing 
The standard addresses used in these commands are 7-bit addresses (without the read/write bit).  MMBasic will 
add the read/write bit and manipulate it accordingly during transfers. 
Some vendors provide 8-bit addresses which include the read/write bit. You can determine if this is the case 
because they will provide one address for writing to the slave device and another for reading from the slave. In 
these situations, you should only use the top seven bits of the address.  For example: If the read address is 9B 
(hex) and the write address is 9A (hex) then using only the top seven bits will give you an address of 4D (hex).  
Another indicator that a vendor is using 8-bit addresses instead of 7-bit addresses is to check the address range. 
All 7-bit addresses should be in the range of 08 to 77 (hex).  If your slave address is greater than this range, 
then probably your vendor has specified an 8-bit address.  

I/O Pins 
Refer to the Pin and Connector Capabilities table at the beginning of this manual for the pin numbers used for 
the I2C channels 1 and 2.  Their signals are marked as data line (SDA) and clock (SCL).    When the I2C 
CLOSE command is used the I/O pins are reset to a "not configured" state.  Then can then be configured as per 
normal using SETPIN. 
Neither the data line (SDA) and clock (SCL) for either I2C ports have any pullup resistors installed on the 
development board. When running the I2C bus at above 100 kHz the cabling between the devices becomes 
important. Ideally the cables should be as short as possible (to reduce capacitance) and also the data and clock 
lines should not run next to each other but have a ground wire between them (to reduce crosstalk).  
If the data line is not stable when the clock is high, or the clock line is jittery, the I2C peripherals can get 
"confused" and end up locking the bus (normally by holding the clock line low). If you do not need the higher 
speeds then operating at 100 kHz is the safest choice. When enabled the I2C pins have a 40K internal pullup. 
Another 10K external pullup may be required if the speed of 400kHz is used or the runs are long. 

Example 
As an example, the following program will read and display the current time (hours and minutes) 
maintained by a PCF8563 real time clock chip connected to I2C channel 2: 

DIM AS INTEGER RData(2)        ' this will hold received data 
I2C2 OPEN 100, 1000           ' open the I2C channel 
I2C2 WRITE &H51, 0, 1, 3      ' set the first register to 3 
I2C2 READ &H51, 0, 2, RData() ' read two registers 
I2C2 CLOSE                     ' close the I2C channel 
PRINT "Time is " RData(1) ":" RData(0) 



Page 197             Armmite F4 User Manual Page 197 

Appendix C – 1-Wire Communications 
1-Wire Communications 
 
The 1-Wire protocol was developed by Dallas Semiconductor to communicate with chips using a single 
signalling line. This implementation was written for MMBasic by Gerard Sexton. 

There are three commands that you can use: 
ONEWIRE RESET pin     Reset the 1-Wire bus 
ONEWIRE WRITE pin, flag, length, data [, data…] Send a number of bytes 
ONEWIRE READ pin, flag, length, data [, data…] Get a number of bytes 

Where: 
pin - The I/O pin (located in the rear connector) to use.  It can be any pin capable of digital I/O. 
flag - A combination of the following options: 

1 - Send reset before command 
2 - Send reset after command 
4 - Only send/recv a bit instead of a byte of data 
8 - Invoke a strong pullup after the command (the pin will be set high and open drain disabled) 

length - Length of data to send or receive 
data - Data to send or variable to receive.   
The number of data items must agree with the length parameter. 

And the automatic variable 

 MM.ONEWIRE     Returns true if a device was found 
 
After the command is executed, the I/O pin will be set to the not configured state unless flag option 8 is used.  
When a reset is requested the automatic variable MM.ONEWIRE will return true if a device was found.  This 
will occur with the ONEWIRE RESET command and the ONEWIRE READ and ONEWIRE WRITE 
commands if a reset was requested (flag = 1 or 2). 
The 1-Wire protocol is often used in communicating with the DS18B20 temperature measuring sensor and to 
help in that regard MMBasic includes the TEMPR() function which provides a convenient method of directly 
reading the temperature of a DS18B20 without using these functions. 
 



Page 198             Armmite F4 User Manual Page 198 

Appendix D – SPI Communications 
SPI Communications 
The Serial Peripheral Interface (SPI) communications protocol is used to send and receive data between 
integrated circuits.   The command SPI refers to channel 1 and SPI2 refers to channel 2.  SPI2 is not listed 
below however it is available on the Armmite F4 and has an identical syntax. 

I/O Pins  
The SPI OPEN command will automatically configure the relevant I/O pins . (listed  at the start of this manual).  
MISO stands for Master In Slave Out and because the Armmite F4 is always the master that pin will be 
configured as an input.  Similarly MOSI stands for Master Out Slave In and that pin will be configured as an 
output. 
When the SPI CLOSE command is used these pins will be returned to a "not configured" state.  They can then 
be configured as per normal using SETPIN.  

SPI Open 
To use the SPI function the SPI channel must be first opened.   The syntax for opening the SPI channel is: 

SPI OPEN speed, mode, bits 

Where: 
 ‘speed’ is the speed of the clock.  This can be 42000000, 21000000, 10500000, 5250000, 2625000, 

1312500, or 756250 (ie, 42MHz, 21MHz, 10.5MHz, 5.25MHz, 2.625MHz, 1.3125MHz, 756.25KHz, or 
378.125KHz).  Any value can be used, the firmware will select the next valid speed that is equal or 
slower than the speed requested. 

 'mode' is a single numeric digit representing the transmission mode – see Transmission Format below.  
 'bits' is the number of bits to send/receive.  This can be 8 or 16 for the Armite F4 
 It is the responsibility of the program to separately manipulate the CS (chip select) pin if required. 

Transmission Format 
The most significant bit is sent and received first.  The format of the transmission can be specified by the 'mode' 
as shown below.  Mode 0 is the most common format. 
The Armmite F4 only supports Mode 0 and 1. 
 
Mode Description CPOL CPHA 

0 Clock is active high, data is captured on the rising edge and output on the falling edge 0 0 
1 Clock is active high, data is captured on the falling edge and output on the rising edge 0 1 
2 Clock is active low, data is captured on the falling edge and output on the rising edge 1 0 
3 Clock is active low, data is captured on the rising edge and output on the falling edge 1 1 

For a more complete explanation see: http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus 

Standard Send/Receive 
When the SPI channel is open data can be sent and received using the SPI function.  The syntax is: 

received_data = SPI(data_to_send) 
Note that a single SPI transaction will send data while simultaneously receiving data from the slave.  
‘data_to_send’ is the data to send and the function will return the data received during the transaction.  
‘data_to_send’ can be an integer or a floating point variable or a constant. 
If you do not want to send any data (ie, you wish to receive only) any number (eg, zero) can be used for the 
data to send. Similarly if you do not want to use the data received it can be assigned to a variable and ignored.   

Bulk Send/Receive 
Data can also be sent in bulk: 

SPI WRITE nbr, data1, data2, data3, … etc 
or 

SPI WRITE nbr, string$ 

http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus


Page 199             Armmite F4 User Manual Page 199 

or 
SPI WRITE nbr, array() 

In the first method  'nbr' is the number of data items to send and the data is the expressions in the argument list 
(ie,  'data1', data2' etc).  The data can be an integer or a floating point variable or a constant. 
In the second or third method listed above the data to be sent is contained in the 'string$' or the contents of 
'array()' (which must be a single dimension array of integer or floating point numbers).  The string length, or the 
size of the array must be the same or greater than nbr.  Any data returned from the slave is discarded. 
Data can also be received in bulk: 

SPI READ nbr, array() 
Where 'nbr' is the number of data items to be received and array() is a single dimension integer array where the 
received data items will be saved.  This command sends zeros while reading the data from the slave. 

SPI Close 
If required the SPI channel can be closed as follows (the I/O pins will be set to inactive): 

SPI CLOSE 

Examples 
The following example shows how to use the SPI port for general I/O.  It will send a command 80 (hex) and 
receive two bytes from the slave SPI device using the standard send/receive function: 
 

  PIN(10) = 1 : SETPIN 10, DOUT     ' pin 10 will be used as the enable signal 
  SPI OPEN 5000000, 3, 8  ' speed is 5 MHz and the data size is 8 bits 
  PIN(10) = 0         ' assert the enable line (active low) 
  junk = SPI(&H80)        ' send the command and ignore the return 
  byte1 = SPI(0)         ' get the first byte from the slave 
  byte2 = SPI(0)         ' get the second byte from the slave 
  PIN(10) = 1         ' deselect the slave 
  SPI CLOSE                         ' and close the channel 
 
The following is similar to the example given above but this time the transfer is made using the bulk 
send/receive commands:  
 

  OPTION BASE 1    ' our array will start with the index 1 
  DIM data%(2)      ' define the array for receiving the data 
  PIN(10) = 1 : SETPIN 10, DOUT     ' pin 10 will be used as the enable signal 
  SPI OPEN 5000000, 3, 8  ' speed is 5 MHz, 8 bits data 
  PIN(10) = 0         ' assert the enable line (active low) 
  SPI WRITE 1, &H80       ' send the command 
  SPI READ 2, data%()        ' get two bytes from the slave 
  PIN(10) = 1         ' deselect the slave 
  SPI CLOSE                         ' and close the channel 
 
 



Page 200             Armmite F4 User Manual Page 200 

Appendix E  W25Q Windbond 
'armite F4 Flash test 
 OPTION BASE 1 
 DIM AS INTEGER F_CS = 35 
 DIM AS INTEGER x 
 DIM AS INTEGER myArray(256) 
  
 SETPIN F_CS, DOUT 
 SPI OPEN 10000000,0,8 
 x = WB.ID%() 
 PRINT "Device ID = ";HEX$(x) 
 x = WB.JEDECID%() 
 PRINT "JEDEC  ID = ";HEX$(x) 
 PRINT "Pagecount = ";WB.PAGECOUNT%() 
 x = WB.SERIAL%() 
 PRINT "Serial No = ";HEX$(x) 
  
 PRINT 
 x = WB.Write_Disable() 
 PRINT "Status registers:" 
 FOR n = 1 TO 3 
   x = WB.READSTATUS(n) 
   PRINT STR$(n);"  ";BIN$(x,8) 
 NEXT n 
 PRINT 
  
 x = WB.READPAGE(1, myArray()) 
 FOR n = 1 TO 100 
   PRINT myArray(n);" "; 
   IF n MOD 10 = 0 THEN PRINT 
 NEXT n 
 z$ = WB.READSTRING$(2) 
 IF LEN(z$)<>255 THEN PRINT z$ 
  
 TIMER = 0 
 x = WB.Write_Enable() 
 x = WB.ERASE() 
 PAUSE 1000 
 PRINT BIN$(WB.READSTATUS(1),8) 
 DO 
   PAUSE 100 
   x = WB.READSTATUS(1)AND 1 
 LOOP UNTIL x = 0 
 PRINT "Erased in ";TIMER; "mS" 
 PRINT BIN$(WB.READSTATUS(1),8) 
 x = WB.Write_Enable() 
 x = WB.WRITESTRING(2,"Freddy is here!!") 
 DO 
   PAUSE 100 
   x = WB.READSTATUS(1)AND 1 
 LOOP UNTIL x = 0 
  
 x = WB.Write_Enable() 
 x = WB.WRITESTRING(2,"Barney is here!!", 20) 
 DO 
   PAUSE 100 
   x = WB.READSTATUS(1)AND 1 
 LOOP UNTIL x = 0 
  
 z$ = WB.READSTRING$(2) 
 PRINT z$ 
 PRINT WB.READSTRING$(2,20) 
  
 x = WB.READPAGE(2, myArray()) 
 FOR n = 1 TO 100 



Page 201             Armmite F4 User Manual Page 201 

   PRINT myArray(n);" "; 
   IF n MOD 10 = 0 THEN PRINT 
 NEXT n 
  
 FOR n = 1 TO 100 
   myArray(n) = n 
 NEXT n 
 x = WB.Write_Enable() 
 x = WB.WRITEPAGE(1, myArray()) 
 PAUSE 1000 
 FOR n = 1 TO 100 
   myArray(n) = 0 
 NEXT n 
  
 x = WB.READPAGE(1, myArray()) 
 FOR n = 1 TO 100 
   PRINT myArray(n);" "; 
   IF n MOD 10 = 0 THEN PRINT 
 NEXT n 
  
 'x = WB.Write_Enable() 
 'x = WB.READSTATUS(2) 
 'x = WB.Write_Enable() 
 'x = x and &B11111101 
 'y = WB.WRITESTATUS(2, x) 
 'pause 1000 
 'print 
 'for n = 1 to 3 
 'x = WB.READSTATUS(n) 
 'print str$(n);"  ";bin$(x,8) 
 'next n 
 ' 
 SPI CLOSE 
FUNCTION WB.Write_Enable() 
 'SPI OPEN 1000000,0,8 
 PIN(F_CS)=0 
 SPI WRITE 1, &H06 
 PIN(F_CS)=1 
 ' SPI CLOSE 
END FUNCTION 
  
FUNCTION WB.Write_Volatile_Enable() 
 ' SPI OPEN 1000000,0,8 
 PIN(F_CS)=0 
 SPI WRITE 1, &H50 
 PIN(F_CS)=1 
 ' SPI CLOSE 
END FUNCTION 
  
FUNCTION WB.Write_Disable() 
 ' SPI OPEN 1000000,0,8 
 PIN(F_CS)=0 
 SPI WRITE 1, &H04 
 PIN(F_CS)=1 
 ' SPI CLOSE 
END FUNCTION 
  
FUNCTION WB.READSTATUS(reg) 
 LOCAL adr 
 SELECT CASE reg 
     CASE 1 : adr = &H05 
     CASE 2 : adr = &H35 
     CASE 3 : adr = &H15 
 END SELECT 
  
 'SPI OPEN 1000000,0,8 
 PIN(F_CS)=0 



Page 202             Armmite F4 User Manual Page 202 

 SPI WRITE 1, adr 
 WB.READSTATUS=SPI(0) 
 PIN(F_CS)=1 
 ' SPI CLOSE 
END FUNCTION 
  
FUNCTION WB.WRITESTATUS(reg, myData) 
 LOCAL adr 
 SELECT CASE reg 
     CASE 1 : adr = &H01 
     CASE 2 : adr = &H31 
     CASE 3 : adr = &H11 
 END SELECT 
 ' SPI OPEN 1000000,0,8 
 PIN(F_CS)=0 
 SPI WRITE 2, adr, myData 
 PIN(F_CS)=1 
 ' SPI CLOSE 
END FUNCTION 
  
FUNCTION WB.ID%() 
 'W25Q64FV &HEF16 
 'W25Q16JV &HEF14 
 LOCAL AS INTEGER mybyte(5) 
 ' SPI OPEN 1000000,0,8 
 PIN(F_CS)=0 
 SPI WRITE 1, &H90 
 SPI READ 5, mybyte() 
 PIN(F_CS)=1 
 'SPI CLOSE 
 WB.ID%=mybyte(4)*256+mybyte(5) 
END FUNCTION 
  
FUNCTION WB.JEDECID%() 
 'W25Q64FV &HEF4017 
 'W25Q16JV &HEF4015 
 LOCAL AS INTEGER mybyte(3) 
 ' SPI OPEN 1000000,0,8 
 PIN(F_CS)=0 
 SPI WRITE 1, &H9F 
 SPI READ 3, mybyte() 
 PIN(F_CS)=1 
 ' SPI CLOSE 
 WB.JEDECID%=mybyte(1)*256*256+mybyte(2)*256+mybyte(3) 
END FUNCTION 
  
FUNCTION WB.PAGECOUNT%() 
 'W25Q64FV &HEF4017 
 'W25Q16JV &HEF4015 
 LOCAL AS INTEGER mybyte(3) 
 ' SPI OPEN 1000000,0,8 
 PIN(F_CS)=0 
 SPI WRITE 1, &H9F 
 SPI READ 3, mybyte() 
 PIN(F_CS)=1 
 ' SPI CLOSE 
 WB.PAGECOUNT%=1 << (mybyte(3)-8) 
END FUNCTION 
  
FUNCTION WB.SERIAL%() 
 LOCAL AS INTEGER mybyte(8) 
 LOCAL AS FLOAT n 
 ' SPI OPEN 1000000,0,8 
 PIN(F_CS)=0 
 SPI WRITE 5, &H4B,0,0,0,0 
 SPI READ 8, mybyte() 
 PIN(F_CS)=1 



Page 203             Armmite F4 User Manual Page 203 

 'SPI CLOSE 
  
 WB.SERIAL%=mybyte(1) 
 FOR n = 2 TO 8 
   WB.SERIAL%=WB.SERIAL%*256+mybyte(n) 
 NEXT n 
END FUNCTION 
  
FUNCTION WB.READPAGE(adr, my%()) 
 LOCAL adr1, adr2,adr3 
 adr = adr<<8 
 adr1 = (adr>>16) AND &HFF 
 adr2 = (adr>>8) AND &HFF 
 adr3 = adr AND &HFF 
 ' SPI OPEN 1000000,0,8 
 PIN(F_CS)=0 
 SPI WRITE 4, &H03, adr1, adr2, adr3 
 SPI READ 256, my%() 
 PIN(F_CS)=1 
 ' SPI CLOSE 
END FUNCTION 
  
FUNCTION WB.WRITEPAGE(adr, my%()) 
 LOCAL adr1, adr2,adr3 
 adr = adr<<8 
 adr1 = (adr>>16) AND &HFF 
 adr2 = (adr>>8) AND &HFF 
 adr3 = adr AND &HFF 
 ' SPI OPEN 1000000,0,8 
 PIN(F_CS)=0 
 SPI WRITE 4, &H02, adr1, adr2, adr3 
 SPI WRITE 256, my%() 
 PIN(F_CS)=1 
 ' SPI CLOSE 
END FUNCTION 
 FUNCTION WB.READSTRING$(adr, offset = 0) 
 LOCAL adr1, adr2,adr3,strLen,my%(256),n 
 adr = (adr<<8) + offset 
 adr1 = (adr>>16) AND &HFF 
 adr2 = (adr>>8) AND &HFF 
 adr3 = adr AND &HFF 
 ' SPI OPEN 1000000,0,8 
 PIN(F_CS)=0 
 SPI WRITE 4, &H03, adr1, adr2, adr3 
 strLen = SPI(0) 
 SPI READ strLen, my%() 
 PIN(F_CS)=1 
 IF strLen > 0 THEN 
   FOR n = 1 TO strLen 
     WB.READSTRING$ = WB.READSTRING$ + CHR$(my%(n)) 
   NEXT n 
 ENDIF 
 ' SPI CLOSE 
END FUNCTION 
  
FUNCTION WB.WRITESTRING(adr, myStr$, offset = 0) 
 LOCAL adr1, adr2,adr3,strLen ',my%(256),n 
 adr = (adr<<8) + offset 
 adr1 = (adr>>16) AND &HFF 
 adr2 = (adr>>8) AND &HFF 
 adr3 = adr AND &HFF 
 strLen = LEN(myStr$) 
 ' my%(1) = strLen 
 '  for n = 1 to strLen 
 '    my%(n+1) = asc(mid$(myStr$,n,1)) 
 '  next n 
 ' SPI OPEN 1000000,0,8 



Page 204             Armmite F4 User Manual Page 204 

 PIN(F_CS)=0 
 SPI WRITE 4, &H02, adr1, adr2, adr3 
 SPI WRITE 1, strLen 
 SPI WRITE strLen, myStr$ 
 'spi write strLen+1, my%() 
 PIN(F_CS)=1 
 ' SPI CLOSE 
END FUNCTION 
  
FUNCTION WB.ERASE() 
 PIN(F_CS)=0 
 SPI WRITE 1, &HC7 
 PIN(F_CS)=1 
 ' SPI CLOSE 
END FUNCTION 



Page 205             Armmite F4 User Manual Page 205 

Appendix F – Special Keyboard Keys  
Special Keyboard Keys 
 
MMBasic generates a single unique character for the function keys and other special keys on the keyboard. 
These are shown in this table as hexadecimal and decimal numbers: 
 

Keyboard Key Key Code  
(Hex) 

Key Code 
(Decimal) 

Up Arrow 80 128 
Down Arrow 81 129 
Left Arrow 82 130 

Right Arrow 83 131 
Insert 84 132 
Home 86 134 
End 87 135 

Page Up 88 136 
Page Down 89 137 

Alt 8B 139 
F1 91 145 
F2 92 146 
F3 93 147 
F4 94 148 
F5 95 149 
F6 96 150 
F7 97 151 
F8 98 152 
F9 99 153 
F10 9A 154 
F11 9B 155 
F12 9C 156 

 
If the shift key is simultaneously pressed then 40 (hex) is added to the code (this is the equivalent of setting bit 
6).  For example Shift-F10 will generate DA (hex). 
The shift modifier only works with the function keys F1 to F12; it is ignored for the other keys. 
 
MMBasic will translate most VT100 escape codes generated by terminal emulators such as Tera Term and 
Putty to these codes (excluding the shift and control modifiers).  This means that a terminal emulator operating 
over a USB or a serial port opened as console will generate the same key codes as a directly attached keyboard.   
 
 
 
 
 
 
 
 



Page 206             Armmite F4 User Manual Page 206 

Appendix G - Cyclic Redundancy Check (CRC) 
Cyclic Redundancy Check (CRC) 
 
The purpose of this description is not to explain or examine the mathematics behind CRCs but merely to 
explain the benefits of using them and how they may be used in MMBasic.  
 
A cyclic redundancy check (CRC) is a strong algebraic error-detecting code commonly used in digital networks 
and storage devices to detect accidental changes to the data. Blocks of data have a short check value attached, 
this is the CRC. A CRC is based on the remainder of a polynomial division of their contents. This technique 
was invented by W.Wesley Peterson in  1961 and further developed by the CCITT.  
 
Note: A CRC is not an error correction code it is just for error detection.  
 
The advantages of using a CRC when sending or saving data are that it is a fast and efficient method for 
detecting errors in data transmission and can detect errors that occur during transmission, and storage caused by 
things such as noise, interference or distortion.  
 
There are simpler methods of error detection including the use of ODD/EVEN parity for ASCII transmission 
and the use of a checksum. A checksum is simply an addition of all of the bits transmitted in a block of data, 
usually the carry bit is ignored and the resultant value is truncated to 8 or  16 bits which is appended to the end 
of the block of data. Neither of these methods are particularly secure.  
 
The more bits in the CRC, the more errors it will detect so a  16 bit CRC will be more secure than an 8 bit CRC 
and so on. While a CRC will not catch all errors, it is much more secure than a simple checksum.  
 

Using a CRC  
 
Suppose we want to send a string via some medium. It could be data from your weather station which is located 
up a pole which is sent via radio to your base station for example.  
 
 A simple example using the MODBUS CRC:  
        ' A simple demonstration of using a CRC  
        ' the data to send  
       a$="123456789"  
        ' calculate the CRC  
       b% = math (crc16 a$,,&h8005,&hffff,0,1,1)  
        ' convert the CRC to a string  
       acrc$ = CHR$(b% AND &HFF) + CHR$((b%>>8) AND &HFF)  
        ' add the CRC to the data to send  
       txd$ = a$ + acrc$  
        ' then transmit the data  
        ' here the data is printed for demonstration  
       print "The data to be transmitted"  
       printstr (txd$)  
 
        ' check the recieved CRC and data  
        c% = math (crc16 txd$,,&h8005,&hffff,0,1,1)  
       check$ = CHR$(c% AND &HFF) + CHR$((c%>>8) AND &HFF)  
       print  



Page 207             Armmite F4 User Manual Page 207 

       print "The CRC of the recieved data including the"  
       print "recieved CRC - the result should be zero"  
       printstr (check$)  
 
        ' Print a string as HEX numbers  (for debug)  
       sub PrintStr (b$)  
         for i = 1 to len (b$)  
           print Hex$(asc (mid$(b$,i,1)),2); ", ";  
         next i  
         print  
       end sub  
 
The CRC value is transmitted along with the data to the receiver. The receiver can verify the received data   
by removing the CRC then recalculate the CRC and compare that with the received CRC Or, more simply,   
recalculate the CRC for the whole received message and verify that the result is zero as demonstrated above.   
If the CRC does not check then the receiver should reply with a negative acknowledgement and request a re-  
transmission of the data. 
 

The MMBasic CRC function:  
 
MATH(CRCn data [,length]  [,polynome]  [,startmask]  [,endmask]  [,reverseIn] [,reverseOut]  
 
Please see the entry in the Functions table. Some of the parameters used in the calculation of the CRC are   
not explained but their purpose may be made clear in the fullness of time. In the meantime here are some   
examples for commonly used CRC calculations from Volhout ’s demonstration program that may be useful.  
 
       ' CCITT CRC16  
       CRC% = math  (crc16 data$,,,&hffff)  
 
       ' MODBUS CRC16  
       CRC% = math  (crc16 data$,,&h8005,&hffff,0,1,1)  
 
       ' XMODEM CRC16  
       CRC% = math  (crc16 data$,)  
 
       ' MAXIM CRC8  
       CRC% = math  (crc8 data$,,&h31,,,1,1)  
 
       ' standard CRC32  
       CRC% = math  (crc32 data$,,,&hffffffff,&hffffffff,1,1)  
 
 Demonstration program  
 
       ' MATH CRC Demonstration program  
       ' Based on the program "MATH CRC evaluation"  
       ' written by Volhout  
       option base 1  
 



Page 208             Armmite F4 User Manual Page 208 

       'test string  
       a$="123456789"  
       l%=len (a$)  
      print "Test string "; a$  
      print  
 
       'convert test string to array  
       dim b%(l%)  
       for i=1 to l%  : b%(i)=asc (mid$(a$,i,1))  : next i  
 
       'perform CRC validation  
       dim CRC%  
 
       'check CCITT CRC16  
       CRC% = math  (crc16 b%(),l%,,&hffff)  
 
      print "CRC16-CCITT  "; hex$(CRC%)  
 
       'check MODBUS CRC16  
       CRC% = math  (crc16 b%(),l%,&h8005,&hffff,0,1,1)  
      print "CRC16-MODBUS "; hex$(CRC%)  
 
       'check XMODEM CRC16  
       CRC% = math  (crc16 b%(),l%)  
      print "CRC16-XMODEM "; hex$(CRC%)  
 
       'check MAXIM CRC8  (used in DALLAS single wire devices)  
       CRC% = math  (crc8 b%(),l%,&h31,,,1,1)  
      print "CRC8-MAXIM   "; hex$(CRC%)  
 
       'check standard CRC32  
       CRC% = math  (crc32 b%(),l%,,&hffffffff,&hffffffff,1,1)  
      print "CRC32        "; hex$(CRC%) 
 
Some useful links: 
The author of this CRC code  https://github.com/RobTillaart/CRC 
Explanations of CRCs http://www.sunshine2k.de/articles/coding/crc/understanding_crc.html#ch1 
                                     https://en.wikipedia.org/wiki/Cyclic_redundancy_check 
On line CRC calculators 
http://zorc.breitbandkatze.de/crc.html 
https://crccalc.com 
https://www.lddgo.net/en/encrypt/crc 

https://github.com/RobTillaart/CRC
http://www.sunshine2k.de/articles/coding/crc/understanding_crc.html#ch1
https://en.wikipedia.org/wiki/Cyclic_redundancy_check
http://zorc.breitbandkatze.de/crc.html
https://crccalc.com/
https://www.lddgo.net/en/encrypt/crc


Page 209             Armmite F4 User Manual Page 209 

Appendix H – Loading the Firmware 
Loading the Firmware 
 
The STM32 processor includes its own programmer/bootloader so the Armmite F4 firmware can be easily 
loaded via USB using a personal computer or laptop (special hardware is not needed).  Just follow these steps. 
 
Go to https://www.st.com/en/development-tools/stm32cubeprog.html and download the 
STM32CubeProgrammer software.  This is free software but STM do require you to have an STM account or 
provide your name and email address.  They will email you a link to download the software.  Then install this 
software on your computer (Windows, Linux and macOS are supported). 
 
With the STM32F407VET6 development board unplugged set the BT0 and BT1 jumpers as in the picture to 
enable the bootloader mode. 
 

 

 
 
 
 
Note:  
BT1 has a pulldown resistor as part 
of the board, so its jumper is not actually 
required.  
All that is required is the BT0 jumper. 
 

 
Using a USB Type-A to Type-B cable connect the USB port on the Armmite F4 to a USB port on your desktop 
computer.  This will power up the STM32F407VET6 development board and you should also hear a sound 
from your computer as it connects and you should see the STM32Bootloader appear as a new device. 

 
 
 

https://www.st.com/en/development-tools/stm32cubeprog.html


Page 210             Armmite F4 User Manual Page 210 

Run the STM32CubeProgrammer software on 
your computer.  On the top right of the program 
window select USB as the communications 
method.  If the program does not recognise the 
USB connection click on the small blue circle to 
the right of the Port drop down list to refresh the 
entry.  Your screen should look like the 
illustration on the right (the USB port number 
may vary).  
 
Click on the "Connect" button.  You should then 
see a series of messages as shown in the 
screenshot below finishing with the message 
"Data read successfully".  Any messages in red 
will indicate an error. 
 

 

Click on the download button (  ) on the left side of the STM32CubeProgrammer window and the 
software will switch to the "Erasing and Programming" mode as shown below. 
Use the "Browse button" to select the firmware file (it will have an extension of .bin). 
Tick the "Verify programming" checkbox.  
 
Finally, click on the "Start Programming" button. 
 

 
 

The STM32CubeProgrammer software will then program the firmware into the flash memory on the STM32 
CPU on STM32F407VET6 development board (the STM32CubeProgrammer software calls this 
"downloading"). After a short time a dialog box will pop up saying that "File download completed".  Do not do 
anything at this point as the software will then start reading back the firmware programmed into the flash.  



Page 211             Armmite F4 User Manual Page 211 

When this has completed successfully another dialog box will pop up saying "Download verified successfully" 
as shown below. The whole operation will take under a minute and any messages in red will indicate an error.  

 

 
Then: 

o Dismiss all the dialog boxes and close the STM32CubeProgrammer software.  
o Disconnect the USB cable from the STM32F407VET6 development board. 
o Set the Boot 0 and Boot 1 jumpers as below to enable the USB as the console by setting jumpers 

as below. 
 

     BT0 to GND, BT1 removed.  
 

 
 
o Reconnect the USB cable to the STM32F407VET6 development board. 

This should power up the STM32F407VET6 which 
will then connect to your desktop computer via 
USB.   
In Windows the connection will appear in Device 
Manager as "USB Serial Port" as illustrated on the 
right (the COM number will probably be different): 
 



Page 212             Armmite F4 User Manual Page 212 

If this doesn't happen immediately try pressing the RST button on the board and unplugging and re-plugging 
the USB connection. Some computers seem to take time to recognise a different device on the same physical 
USB port. 
On Windows 10 the driver for the USB console is included with Windows 10. On Win7 and earlier the USB 
console requires STMicroelectronics Virtual COM Port drivers to be installed. (This driver is separate from the 
drivers installed with STM32 Cube Programmer software). Virtual COM Port drivers at 
www.st.com/en/development-tools/stsw-stm32102.html  
 
Connect a terminal emulator to the port and you should see the Armmite copyright banner. 

 
 
If not, press return to wake up the USB connection and it this still doesn't work try disconnecting the terminal 
emulator and re-connecting, pressing RST, unplugging and re-plugging. 
 
The Armmite firmware controls the CDC connection as follows: 
On power up, if no USB connection is plugged in (separate 5V supply) console output will be black-holed. 
On power up, if a USB connection is plugged in console output will be buffered until a terminal emulator is 
connected. 
Once running, if the USB connection is removed (separate 5V power) console output is black-holed 
Once running, if the USB connection is re-inserted, console output will be restored from the point at which the 
USB was re-connected. 
 

Alternative Method – Using COM 1 
An alternative method of loading the firmware is via COM1 using a USB to serial adaptor.You may want to try 
this as a trouble shooting step if you fail to program using the USB port on the board. Connect the USB to  J6 
the COM1 port on the STM32F407VET6. The USB to serial adaptor is coverted near the start of this manual. 
 
In Windows the connection will appear in Device Manager as 
"USB Serial Port" as illustrated on the right (the COM number 
will probably be different): 
 
Install the STM32CubeProgrammer software on your computer 
as described above.   
 

http://www.st.com/en/development-tools/stsw-stm32102.html


Page 213             Armmite F4 User Manual Page 213 

 
 
Run the software and select UART in the top right corner 
(as illustrated on the right).  Then select the correct COM 
port number as reported in Device Manager.  Finally make 
sure that the baudrate is set to 115200 baud and the parity 
set to even: 
From then on the process is the same as that described 
above when using a direct USB connection via the 
keyboard port: 

o Click on "Connect". 
o Select "Erase & Programming" mode. 
o Browse for the firmware file. 
o Tick the "Verify programming" checkbox. 
o Click on "Program". 

 
The whole operation will take about 5 minutes. 
 
 
 
When the programming/verify has completed set the Boot 0 and Boot 1 jumpers to enable the console.  
 BT0 to GND, BT1 removed.  
Note: MMBasic will start up with USB Console enabled as the default. See section at the start of this manual to 
switch to serial console at startup. 

Linux and the Raspberry Pi 
Loading the firmware from a Linux computer and/or the Raspberry Pi has some special considerations and 
these are explained here: http://www.thebackshed.com/forum/ViewTopic.php?FID=16&TID=12171 
 

http://www.thebackshed.com/forum/ViewTopic.php?FID=16&TID=12171


 

Appendix M – Alternate Commands and Functions 
Background 
The number of command and functions in MMBasic is limited to 128 of each. Over time this limit has been reached and some rearrangements on commands/functions has 
taken place to allow increased functionaliy to be included. Typically a stand alone command/function is merged as a variant of  another command /function, freeing up its 
original command slot.e.g. FFT becomes MATH FFT. A new function BIN$ merges three existing functions BIN$, HEX$ and OCT$. 
In some cases the old command/function is still accepted as a valid syntax and will match its new command/function slot. It will however appear in its new format when 
opened in EDIT or listed via the LIST command. 
In the table below the current/displayed syntax is shown in bold underneath any also acceped version of the command/function for each device type. 
Also show are commands that are diffented between platforms.e.g. NAME vs RENAME 
Also show commands treated as separate functionality, but implemented as the same command. e.g. CAT and INC 

BLIT/SPRITE 
BLIT and SPRITE are the same command and both forms are accepted, however which one is appears via LIST or EDIT varies between the Armmites and Picomites. 

Table of Accepted and Core Syntax 
Item/Functionality Micromite(s) Armmite F4 Armmite H7 PicoMite(s0 

     
BIN$() BIN$() BIN$() BIN$() 

BASE$(2, …  ) 
BIN$() 

HEX$() HEX$() HEX$() BIN$() 
BASE$(16, …  ) 

HEX$() 

OCT$() OCT$() OCT$() BIN$() 
BASE$(8, …  ) 

OCT$() 

Humidity DHT22 CSUB (HUMID) HUMID 
BITBANG HUMID 
 

DHT22 
HUMID 
BITBANG HUMID 

BITBANG HUMID 

WS2812 Leds n/a WS2812 
BITBANG WS2812 
 

WS2812 
BITBANG WS2812 

BITBANG WS2812 

BITSTREAM CSUB (Bitstream) BITBANG BITSTREAM BITBANG BITSTREAM BITBANG BITSTREAM 



Page 215             Armmite F4 User Manual Page 215 

LCD LCD LCD 
BITBANG LCD 

LCD 
BITBANG LCD 

BITBANG LCD 

Fast Fourier Transform n/a MATH FFT MATH FFT MATH FFT 

Rename a file NAME  (MM+ only) NAME NAME RENAME 

 n/a MM.INFO$ 
MMINFO 

MM.INFO$ 
MMINFO 

MM.INFO$ 
MMINFO 

Device Type  MM.DEVICE$ MM.DEVICE$  

Version  MM.VER MM.VER  

Error No.  MM.ERRNO MM.ERRNO  

Error Message  MM.ERRMSG$ MM.ERRMSG$  

  MM.ONEWIRE MM.ONEWIRE  

  MM.FONTHEIGHT MM.FONTHEIGHT  

  MM.FONTWIDTH MM.FONTWIDTH  

ERASE nominated variable ERASE ERASE ERASE 
CLEAR VARS 

ERASE 

Clear all variables CLEAR CLEAR CLEAR CLEAR 

Blit and Sprit BLIT BLIT SPRITE 
BLIT 

BLIT 
SPRITE 

CAT and INC are the same 
command 

n/a CAT 
INC 

CAT 
INC 

CAT 
INC 

     

     

     

     

     
 


	Armmite F4 Features
	STM32F407VET6 Data Sheet and Schematic
	STM32F407VET6 Cortex-M4 32-bit RISC CPU @ 168MHz
	132Kbyte program and 114Kbyte variable space
	MM.DEVICE$
	Double Precision Floating Point
	Random Number Generation
	Longstring handling
	Input Output Pins and Protocols
	USB Console (the default)
	Four Serial Ports
	Eight PWM Channels
	Two SPI Channels
	I2C
	1-Wire Communication
	Dual 12-bit DACs
	Three 12-bit ADCs
	Battery Backed-up Built-in Real time clock (RTC)
	SPI LCD Panel and Touch Connector
	16-bit interface to SSD1963, ILI9341, OTM8009A and NT35510 Based LCD Displays
	PS2 Keyboard Connection
	Audio Output
	Extended WAV File Playback
	Temperature Sensor
	External I/O connectors
	W25Q16 Flash
	RST Key
	Key 0 Switch
	Key 1 Switch
	Key_UP Switch
	LED D2 and D3
	Power LED
	WS2812 support
	GPS support
	OPTION VCC voltage
	CPU SLEEP commands
	CPU SLEEP
	CPU SLEEP time
	Unsupported commands

	Loading the MMBasic Firmware
	Program Memory not cleared when firmware updated
	Options not cleared when firmware updated
	Saved variables not cleared when firmware updated

	Power and Console Connections
	USB Console (the default)
	Windows USB connection
	Apple Macintosh USB connection
	Linux USB connection
	Power Requirements
	Powering from external 5V source
	Switching to Serial Console (via Option Command)
	Switching to Serial Console (via Key 0 at Restart)
	Restoring USB Console (via Option Command)
	Restoring USB Console (via Key 1 at Restart)
	Armmite F4 interaction with USB console
	Using Serial Console via a USB – Serial Converter
	VT100 Terminal Emulators
	Wireless Console using ESP-01 ESP8266
	Troubleshooting USB Console
	Troubleshooting Serial Console
	Resetting MMBasic

	Pin and Connector Capabilities
	STM32F407VET6 Pin function and connector positions
	STM32F407VET6 Explanation of keys used in above table
	STM32F407VET6 Connector and Pin Layout
	STM32F407VET6 Board Versions
	STM32F407VET6 Pins by Function
	STM32F407VET6 Modifications
	STM32F407VET6 MINI Pin function and connector positions
	STM32F407VET6 MINI Connector and Pin Layout
	STM32F407VET6 MINI Differences
	STM32F407VET6 MINI – Modification to Route RST and SPI-IN
	STM32F407VET6 MINI Connector and Pin Layout -After Modification

	Using MMBasic
	Commands and Program Input
	Editing the Command Line
	Shortcut Keys at Commandline
	Shortcut Keys in AUTOSAVE
	Line Numbers and Program Structure
	Running or Interrupting a Program
	Saved Variables
	Timing
	Watchdog Timer
	PIN Security
	Single, Secure HEX File
	Commands Vs Functions
	Read Only Variables
	Setting Options
	Saving Options
	Resetting MMBasic
	OPTION RESET

	Quick Start Tutorial
	Immediate Mode
	A Simple Program
	Flashing a LED on the STM32F407VET6 board
	Tutorial on Programming in the BASIC Language
	Setting the AUTORUN Option

	Full Screen and Commandline Editors
	Full Screen Editor
	Long Lines in the Editor
	Colour Coded Editor Display
	Command Line Buffer and Editor

	Variables, Expressions and Operators
	Naming Conventions
	Variables
	Constants
	OPTION DEFAULT
	OPTION EXPLICIT
	DIM and LOCAL
	STATIC
	CONST
	Special Characters in Strings
	Expressions and Operators
	Mixing Floating Point and Integers
	64-bit Unsigned Integers

	Subroutines and Functions
	Subroutines
	Local Variables
	Functions
	Passing Arguments by Reference
	Passing Arguments by Value
	Passing Arrays
	Early Exit
	Recursion
	Example of a Defined Function

	Program Initialisation, CFunctions and the Library
	Embedded C Routines - CSubs and CFunctions
	The Library
	Library Implementation Details (Armmite F4)
	Program Initialisation
	MM.STARTUP
	MM.PROMPT
	Flow Diagram
	Memory Command

	Using the I/O pins
	Digital Inputs
	Analog Inputs
	Counting Inputs
	Digital Outputs
	Pulse Width Modulation
	Interrupts
	Interrupts (polled) vs SETPIN CIN,PIN,FIN (hardware)

	Armmite F4 Deployment Considerations
	Setting Option VCC
	Armmite F4 Reliance on Battery Backed Ram
	Battery Life and Monitoring VBAT

	Running Armmite F4 without Backup Battery
	No Battery and Embedding Configuration Options in a Program
	OPTION AUTORUN ON in MM.STARTUP (No Battery Backed up Options)
	Using the Library on Armmite F4 with No Battery Backed up Options
	VAR Save VAR Restore not persistant.
	RTC will not maintain time if power removed
	Mitigating Battery Failure

	Electrical Characteristics
	Power Supply
	Digital Inputs
	Analog Inputs
	Digital Outputs
	Timing Accuracy
	PWM Output
	Serial Communications Ports
	Other Communications Ports
	Flash Endurance

	Audio Output
	Playing WAV and FLAC Files
	Generating Sine Waves
	Utility Commands

	Special Device Support
	Infrared Remote Control Decoder
	Infrared Remote Control Transmitter
	Measuring Temperature
	Measuring Humidity and Temperature
	Measuring Distance
	LCD Display
	Keypad Interface
	WS2812 and SK6812 RGBW Support

	SD Card Support
	Load and Save Image
	Load and Save Data
	File and Directory Management
	XModem Transfer
	Example of Sequential I/O
	Random File I/O

	W25Q16 Flash Support
	Display Panels
	16 Bit Parallel Interface LCD Panels
	Pin out for FSMC connector.
	Pins not available to MMBasic or SPI LCD Panels.
	SSD1963 Power Considerations
	Backlight Control – BACKLIGHT (0-100)
	SPI Based LCD Panels
	Connecting SPI Based LCD Panels
	Configuring MMBasic for SPI Displays
	User Defined LCD Panels in MMBasic
	Loadable Driver LCD Panels as CSUBs

	Touch Support
	Configuring Touch
	Calibrating the Touch Screen
	Touch Functions
	The GUI BEEP Command
	Touch Interrupts

	PS2 Keyboard and LCDPANEL as Console
	LCD Display as the Console Output
	Using LCDPANEL as the Console
	PS2 Keyboard

	Using an LCD Panel
	Screen Coordinates
	Read Only Variables
	Drawing Commands
	Colours
	RGB888 Vs RGB565 with Pixel()
	Fonts
	Embedded Fonts
	Rotated Text
	Transparent Text
	BLIT Command
	Load Image
	Example

	Advanced Graphics
	Frame
	LED
	Check Box
	Push Button
	Switch
	Radio Button
	Display Box
	Text Box
	Number Box
	Formatted Number Box
	Spin Box
	Caption
	Circular Gauge
	Bar Gauge
	Area
	Interacting with Controls
	MsgBox()

	Advanced Graphics Programming Techniques
	The User Should Be In Control
	Program Structure
	Disable Invalid Controls
	Use Constants for Control Reference Numbers
	The Main Program Is Still Running
	Use Interrupts and SELECT CASE Statements
	Touch Up Interrupt
	Keep Interrupts Very Short
	Multiple Screens
	Multiple Interrupts
	Using Basic Drawing Commands
	Overlapping Controls
	Timing LCD Updates with GETSCANLINE()
	The Pump Control Example GUI Program

	Miscellaneous Features
	Serial Interfaces
	SPI Interface
	Upgrading Your BASIC Program in the Field
	Creating CSUBs

	Other Devices and Support Resources
	The Back Shed Forum
	Fruit of the Shed Wiki
	Interfacing various hardware modules
	Internet Access using ESP8266

	MMBasic Characteristics
	Implementation Characteristics
	Compatibility
	MMBasic Firmware Memory Map for the STM32F407 Implementation

	Startup and Reset – Quick Reference
	Detailed Listing

	Operators and Precedence
	Detailed Listing
	Numeric Operators (Float or Integer)
	String Operators

	Predefined Read Only Variables
	Detailed Listing
	MM.CMDLINE$
	MM.CMDLINE$
	MM.DEVICE$
	MM.FONTHEIGHT
	MM.FONTWIDTH
	MM.HPOS
	MM.HRES
	MM.VRES
	MM.I2C
	MM.I2C
	MM.INFO$
	MM.INFO
	MM.INFO$(AUTORUN
	MM.INFO$(CONSOLE
	MM.INFO$(CPUSPEED
	MM.INFO$(DEVICE
	MM.INFO$(EXISTS DIR
	MM.INFO$(EXISTS FILE
	MM.INFO$(FONT ADDRESS
	MM.INFO$(FONT POINTER
	MM.INFO$(FCOLOUR
	MM.INFO$(BACKCOLOUR
	MM.INFO$(FONTHEIGHT
	MM.INFO$(FONTWIDTH
	MM.INFO(WIDTH
	MM.INFO(HEIGHT
	MM.INFO(HPOS
	MM.INFO(VPOS
	MM.INFO$(LCDPANEL)
	MM.INFO$(LINE
	MM.INFO(OPTION
	MM.INFO(PINNO
	MM.INFO$(PIN
	MM.INFO(RESTART
	MM.INFO$(SDCARD
	MM.INFO$(TOUCH
	MM.INFO (VARCNT
	MM.INFO (VERSION
	MM.ERRMSG$
	MM.ERRNO
	MM.ERRMSG$  - SDCARD related
	MM.ERRNO       - SDCARD related
	MM.ONEWIRE
	MM.VER
	MM.WATCHDOG


	Option Settings
	Detailed Listing
	ANGLE
	AUTORUN
	BASE
	BAUDRATE
	BREAK
	CASE
	COLOURCODE
	CONTROLS
	DEFAULT
	DISPLAY
	ESCAPE
	EXPLICIT
	FLASH_CS
	KEYBOARD
	LCDPANEL  (SPI)
	LCDPANEL (P16)
	LCDPANEL CONSOLE
	LCDPANEL NOCONSOLE
	LIST
	MILLISECONDS
	PIN
	RESET
	OPTION RESET
	RTC
	SERIAL CONSOLE
	SERIAL PULLUP
	TAB
	TOUCH
	VCC


	Commands
	Detailed Listing
	‘ (single quotation mark)
	*file
	? (question mark)
	ADC
	ARC
	AUTOSAVE
	BACKLIGHT
	BEZIER
	BITBANG BITSTREAM
	BITBANG HUMID
	BITBANG LCD
	BITBANG WS2812
	BLIT
	BOX
	CALL
	CAT
	CHDIR
	CIRCLE
	CLEAR
	CLOSE
	CLS
	COLOUR
	CONST
	CONTINUE
	CPU RESTART
	CPU SLEEP
	CFUNCTION
	CSUB
	CTRLVAL
	DAC
	DATA
	DATE$
	DEFINEFONT
	DHT22
	DIM
	DO
	EDIT
	ELSE
	ELSEIF
	END
	END CSUB
	END FUNCTION
	ENDIF
	END SELECT
	END SUB
	ERASE
	ERROR
	EXECUTE
	EXIT…
	FILES
	FONT
	FOR
	FTT
	FUNCTION
	GOSUB
	GOTO
	---GUI Controls—
	GUI AREA
	GUI BARGAUGE
	GUI BCOLOUR
	GUI BEEP
	GUI BUTTON
	GUI CAPTION
	GUI CHECKBOX
	GUI DELETE
	GUI DISABLE
	GUI DISPLAYBOX
	GUI ENABLE
	GUI FCOLOUR
	GUI FRAME
	GUI FORMATBOX
	GUI GAUGE
	GUI HIDE
	GUI INTERRUPT
	GUI LED
	GUI NUMBERBOX
	GUI PAGE
	GUI RADIO
	GUI REDRAW
	GUI SETUP
	GUI SHOW
	GUI SPINBOX
	GUI SWITCH
	GUI TEXTBOX
	---GUI Commands—
	GUI BITMAP
	GUI CALIBRATE
	GUI RESET LCDPANEL
	GUI TEST LCDPANEL
	GUI TEST TOUCH
	HUMID
	I2C
	IF
	INC
	INPUT
	INTERRUPT
	IR
	IR SEND
	IRETURN
	KEYPAD
	KILL
	LCD
	LET
	LIBRARY
	LINE
	LINE INPUT
	LIST
	LIST COMMANDS
	LIST FUNCTIONS
	LOAD
	LOAD DATA
	LOAD IMAGE
	LOCAL
	LONGSTRING
	LOOP
	MATH
	MATH FFT
	MEMORY
	MEMORY COPY
	MEMORY SET
	MEMORY PACK/UNPACK
	MID$
	MKDIR
	NAME … AS
	NEW
	NEXT
	ON ERROR
	ON … GOTO
	ON KEY
	ONEWIRE
	OPEN
	OPTION
	PAGE
	PAUSE
	PIN
	PIXEL
	PLAY
	POKE
	POLYGON
	PORT
	PRINT
	PULSE
	PWM
	RBOX
	READ
	READ SAVE|RESTORE
	REM
	RESTORE
	RMDIR
	RUN
	SAVE
	SAVE DATA
	SAVE IMAGE
	SEEK
	SELECT CASE
	SERVO
	SETPIN
	SETTICK
	SORT
	SPI
	SPRITE
	STATIC
	STEP
	SUB
	SYNC
	TEMPR START
	TEXT
	TIME$
	TIMER
	TO
	TRACE
	TRIANGLE
	VAR
	WATCHDOG
	WS2812
	XMODEM


	Functions
	Detailed Listing
	ABS
	ACOS
	ASC
	ASIN
	ATAN2
	ATAN
	BAUDRATE
	BIN$
	BIN2STR$
	BOUND
	CALL
	CHOICE
	CHR$
	CINT
	COS
	CTRLVAL
	CWD$
	DATE$
	DATETIME$
	DAY$
	DEG
	DIR$
	DISTANCE
	EOF
	EPOCH
	EVAL
	EXP
	FIELD$
	FIX
	FORMAT$
	GETSCANLINE
	GPS
	HEX$
	INKEY$
	INPUT$
	INSTR
	INT
	JSON$
	LCASE$
	LCOMPARE
	LEFT$
	LEN
	LGETBYTE
	LGETSTR$
	LINSTR
	LLEN
	LOC
	LOF
	LOG
	MATH
	MATH CRC
	MAX
	MIN
	MID$
	MSGBOX
	OCT$
	PEEK
	PI
	PIN
	PIXEL
	PORT
	POS
	PULSIN
	RAD
	RGB
	RIGHT$
	RND
	SGN
	SIN
	SPACE$
	SPI
	SQR
	STR2BIN
	STR$
	STRING$
	TAB
	TAN
	TEMPR
	TIME$
	TIMER
	TOUCH
	UCASE$
	VAL


	Obsolete Commands and Functions
	Detailed Listing
	GOSUB
	IRETURN
	POS
	RETURN


	Change Log
	Appendix A – Serial Communications
	The OPEN Command
	Input/Output Pin Allocation
	Examples
	Reading and Writing
	Interrupts
	Low Cost RS-232 Interface

	Appendix B – I2C Communications
	7-Bit Addressing
	I/O Pins
	Example

	Appendix C – 1-Wire Communications
	Appendix D – SPI Communications
	I/O Pins
	SPI Open
	Transmission Format
	Standard Send/Receive
	Bulk Send/Receive
	SPI Close
	Examples

	Appendix E  W25Q Windbond
	Appendix F – Special Keyboard Keys
	Appendix G - Cyclic Redundancy Check (CRC)
	Using a CRC
	The MMBasic CRC function:

	Appendix H – Loading the Firmware
	Alternative Method – Using COM 1
	Linux and the Raspberry Pi


